CS412/413

Introduction to Compilers
Radu Rugina

Lecture 4: Lexical Analyzers
27 Jan 03

Outline

o DFA state minimization
e Lexical analyzers

o Automating lexical analysis
e Jlex lexical analyzer generator

CS 412/413 Spring 2003 Introduction to Compilers

Finite Automata

Finite automata:
— States, transitions between states
— Initial state, set of final states

¢ DFA = deterministic
— Each transition consumes an input character
— Each transition is uniquely determined by the input character

¢ NFA = non-deterministic

— There may be e-transitions, which do not consume input
characters

— There may be multiple transitions from the same state on
the same input character

CS 412/413 Spring 2003 Introduction to Compilers 3

From Regexp to DFA

e Two steps:
— Convert the regular expression to an NFA
— Convert the resulting NFA to a DFA

e The generated DFAs may have a large number of
states

» State Minimization = optimization which converts a
DFA to another DFA which recognizes the same
language and has a minimum number of states

CS 412/413 Spring 2003 Introduction to Compilers

State Minimization

e Example:

—DFAL:

()b b
— DFA2: (0) : Q - @

— Both DFAs accept: b*ab*a

CS 412/413 Spring 2003 Introduction to Compilers 5

State Minimization

¢ Idea: find groups of equivalent states
— all transitions from states in one group G; go to
states in the same group G,
— construct the minimized DFA such that there is

one state for each group of states from the initial
DFA

CS 412/413 Spring 2003 Introduction to Compilers

DFA Minimization Algorithm

Step 1: Construct a partition P of the set of states having two groups:
F = the set of final (accepting) states
S-F = set of non-final states

Step 2:
Repeat Let P = G, U ... U G, the current partition
Partition each goup G; into subgroups:

Two states s and t are in the same subgroup if, for each
symbol a there are transitionss - s’andt — t'and &', t’
belong to the same group G;

Combine all the computed subgroups into a new partition P"
Until P =P’

Step3: Construct a DFA with one state for each group of states in the
final partition P

CS 412/413 Spring 2003 Introduction to Compilers

Optimized Acceptor

Regular
Expression

CS 412/413 Spring 2003

Minimize DFA

Introduction to Compilers

N DFA Ll
Simulation

Yes, if w O L(R)
No, if w O L(R)

Lexical Analyzers vs Acceptors

¢ Lexical analyzers use the same mechanism,
but they:
— Have multiple RE descriptions for multiple tokens
— Have a character stream at the input

— Return a sequence of matching tokens at the
output (or an error)

— Always return the longest matching token

— For multiple longest matching tokens use rule
priorities

CS 412/413 Spring 2003 Introduction to Compilers

Lexical Analyzers

REs for R—b| RE= NFA
1 R
Tokens NFA = DFA
Minimize DFA
v
Character DFA | |
Stream 9™ T Simulation

CS 412/413 Spring 2003

Introduction to Compilers

—> Token stream

(and errors)

Handling Multiple REs

e Combine the NFAs of all the regular expressions into a
single finite automata

NFAs

Minimized DFA

.
O
00000

CS 412/413 Spring 2003 Introduction to Compilers 1

Lexical Analyzers

¢ Token stream at the output
— Associate tokens with final states
— Output the corresponding token when reaching a final state

e Longest match

— When in a final state, look if there is a further transition;
otherwise return the token for the current final state

e Rule priority

— Same longest matching token when there is a final state
corresponding to multiple tokens

— Associate that final state to the token with the highest

priority

CS 412/413 Spring 2003

Introduction to Compilers

Issue

JLex tries to find the longest matching sequence

¢ Problem: what if the lexer goes past a final state of a
shorter token, but then doesn't find any other longer
matching token later?

Consider R=00 | 10 | 0011 and input: 0010

¢ We reach state 3 with no transition on input 0!
¢ Solution: record the last accepting state

CS 412/413 Spring 2003 Introduction to Compilers 13

Automating Lexical Analysis

o All of the lexical analysis process can be
automated !
- RE — NFA - DFA - Minimized DFA
— Minimized DFA - Lexical Analyzer (DFA
Simulation Program)

¢ We only need to specify:

— Regular expressions for the tokens
— Rule priorities for multiple longest match cases

CS 412/413 Spring 2003 Introduction to Compilers 14

Lexical Analyzer Generators
REs fi
Tovens =2]-
javac

Character program | —T—®| lex.class I‘-’ Token stream
Stream (and errors)
CS 412/413 Spring 2003 Introduction to Compilers 15

Jlex Specification File

e Jlex = Lexical analyzer generator
— written in Java
— generates a Java lexical analyzer

e Has three parts:
— Preamble, which contains package/import declarations
— Definitions, which contains regular expression abbreviations
— Regular expressions and actions, which contains:
« the list of regular expressions for all the tokens

» Corresponding actions for each token (Java code to be
executed when the token is returned)

CS 412/413 Spring 2003 Introduction to Compilers 16

Example Specification File

Package Parse;
Import Error.LexicalError;
%%
digits = 0|[1-9][0-9]*
letter = [A-Za-z]
identifier = {letter}({letter}|[0-9_])*
whitespace = [\ \t\n\r]+
%%
{whitespace} {/* discard */}
{digits} { return new
Token(INT, Integer.valueOf(yytext()); }
“if” { return new Token(IF, null); }
“while” { return new Token(WHILE, null); }
{identifier} { return new Token(ID, yytext()); }
. { ErrorMsg.error(“illegal character”); }

CS 412/413 Spring 2003 Introduction to Compilers 17

Start States

e Mechanism which specifies in which state to start the
execution of the DFA

¢ Define states in the second section
— Y%state STATE

o Use states as prefixes of regular expressions in the
third section:
— <STATE> regex {action}

e Set current state in the actions
— yybegin(STATE)

e There is a pre-defined initial state: YYINITIAL

CS 412/413 Spring 2003 Introduction to Compilers 18

Example

%state STRING

%%

<YYINITIAL> “if” { return new Token(IF, null); }
<YYINITIAL> “\"" { yybegin(STRING); }
<STRING> “\"" { yybegin(YYINITIAL); }

Start States and REs

e The use of states allow the lexer to recognize
more than regular expressions (or DFAs)

— Reason: the lexer can jump across different states
in the semantic actions using yybegin(STATE)

¢ Example: nested comments

— Increment a global variable on open parentheses
and decrement it on close parentheses

— When the variable gets to zero, jump to YYINITIAL

— The global variable essentially models an infinite
number of states!

CS 412/413 Spring 2003 Introduction to Compilers 20

<STRING> . {}
CS 412/413 Spring 2003 Introduction to Compilers 19
Conclusion

¢ Regular expressions: concise way of
specifying tokens

¢ Can convert RE to NFA, then to DFA, then to
minimized DFA

¢ Use the minimized DFA to recognize tokens in
the input stream

¢ Automate the process using lexical analyzer
generators
— Write regular expression descriptions of tokens

— Automatically get a lexical analyzer program which
identifies tokens from an input stream of
characters

CS 412/413 Spring 2003 Introduction to Compilers 21

