Regular Expressions

- If R and S are regular expressions, so are:
 - ε: empty string
 - a: for any character a
 - RS: (concatenation: "R followed by S")
 - R | S: (alternation: "R or S")
 - R*: (Kleene star: "zero or more R's")

Regular Expression Extensions

- If R is a regular expressions, so are:
 - R?: = ε | R (zero or one R)
 - R+ = RR* (one or more R’s)
 - (R) = R (no effect: grouping)
 - [abc] = a|b|c (any of the listed)
 - [a-e] = a|b|...| e (character ranges)
 - [^ab] = c|d|... (anything but the listed chars)

Concepts

- Tokens = strings of characters representing the lexical units of the programs, such as identifiers, numbers, keywords, operators
 - May represent a unique character string (keywords, operators)
 - May represent multiple strings (identifiers, numbers)

- Regular expressions = concise description of tokens
 - A regular expressions describes a set of strings

- Language denoted by a regular expression = the set of strings that it represents
 - L(R) is the language denoted by regular expression R

How To Use Regular Expressions

- We need a mechanism to determine if an input string w belongs to the language denoted by a regular expression R

 ![Diagram](https://via.placeholder.com/150)

 Input string w in the program

 Regex R which describes a token

 Yes, if w is token
 No, if w is not token

- Such a mechanism is called an acceptor
Acceptors
- **Acceptor** = determines if an input string belongs to a language \(L \)

\[
\begin{array}{c|c|c}
\text{Input String} & \text{Acceptor} & \\
\hline
w & \{ \text{Yes, if } w \in L \} & \{ \text{No, if } w \notin L \}
\end{array}
\]

- **Finite Automata** = acceptor for languages described by regular expressions

Finite Automata
- Informally, finite automata consist of:
 - A finite set of states
 - Transitions between states
 - An initial state (start state)
 - A set of final states (accepting state)
- Two kinds of finite automata:
 - Deterministic finite automata (DFA): the transition from each state is uniquely determined by the current input character
 - Non-deterministic finite automata (NFA): there may be multiple possible choices or some transitions do not depend on the input character

DFA Example
- Finite automaton that accepts the strings in the language denoted by the regular expression \(ab^*a \)

\[
\begin{array}{c|c|c}
\text{transition table} & a & b \\
\hline
0 & 1 & Error \\
1 & 2 & 1 \\
2 & Error & Error
\end{array}
\]

Simulating the DFA
- Determine if the DFA accepts an input string

\[
\text{trans_table}[\text{NSTATES}][\text{NCHARS}]
\]
\[
\text{accept_states}[\text{NSTATES}]
\]
\[
\text{state} = \text{INITIAL}
\]
\[
\text{while} (\text{state} \neq \text{ERROR}) \\
\quad \text{c} = \text{input.read}(); \\
\quad \text{if} (\text{c} \neq \text{EOF}) \text{break}; \\
\quad \text{state} = \text{trans_table}[ext{state}][\text{c}]; \\
\text{return} \text{accept_states}[ext{state}];
\]

RE → Finite automaton?
- Can we build a finite automaton for every regular expression?
- Strategy: build the finite automaton inductively, based on the definition of regular expressions

\[
\varepsilon \quad a
\]

RE → Finite automaton?
- Alternation \(R | S \)

\[
\oplus
\]

- Concatenation: \(RS \)

\[
\rightarrow
\]
NFA Definition
- A non-deterministic finite automaton (NFA) is an automaton where the state transitions are such that:
 - There may be e-transitions (transitions which do not consume input characters)
 - There may be multiple transitions from the same state on the same input character

Example: regexp?

RE ⇒ NFA intuition

NFA construction
- NFA only needs one stop state (why?)
- Canonical NFA:

Use this canonical form to inductively construct NFAs for regular expressions

Inductive NFA Construction

DFA vs NFA
- DFA: action of automaton on each input symbol is fully determined
 - obvious table-driven implementation
- NFA:
 - automaton may have choice on each step
 - automaton accepts a string if there is any way to make choices to arrive at accepting state / every path from start state to an accept state is a string accepted by automaton
 - not obvious how to implement!

Simulating an NFA
- Problem: how to execute NFA?
 "strings accepted are those for which there is some corresponding path from start state to an accept state"
- Conclusion: search all paths in graph consistent with the string
- Idea: search paths in parallel
 - Keep track of subset of NFA states that search could be in after seeing string prefix
 - "Multiple fingers" pointing to graph
Example

- Input string: -23
- NFA states:
 - \{0, 1\}
 - \{1\}
 - \{2, 3\}
 - \{2, 3\}

NFA-DFA conversion

- Can convert NFA directly to DFA by same approach
- Create one DFA for each distinct subset of NFA states that could arise
- States: \{(0, 1), \{1\}, \{2, 3\}\}

Algorithm

- For a set \(S\) of states in the NFA, compute \(\epsilon\)-closure(S) = set of states reachable from states in \(S\) by \(\epsilon\)-transitions
 - \(T = S\)
 - Repeat \(T = T \cup \{s | s \in T, (s,s') is \epsilon\)-transition\)
 - Until \(T\) remains unchanged
 - \(\epsilon\)-closure(S) = \(T\)
- For a set \(S\) of states in the NFA, compute \(\text{DFAEdge}(S,c) = \) the set of states reachable from states in \(S\) by transitions on character \(c\) and \(\epsilon\)-transitions
 - \(\text{DFAEdge}(S,c) = \epsilon\)-closure(\(\{ s | s \in S, (s,s') is \epsilon\)-transition\))

Algorithm

\[
\text{DFA-initial-state} = \epsilon\text{-closure}(\text{NFA-initial-state})
\]
\[
\text{Worklist} = (\text{DFA-initial-state})
\]
\[
\text{While (Worklist not empty)}
\]
\[
\text{Pick state \(S\) from Worklist}
\]
\[
\text{For each character } c
\]
\[
S' = \text{DFAEdge}(S,c)
\]
\[
\text{if (} S' \text{ not in DFA states)}
\]
\[
\text{Add } S' \text{ to DFA states and worklist}
\]
\[
\text{Add an edge (} S, S' \text{) labeled } c \text{ in DFA}
\]
\[
\text{For each DFA-state } S
\]
\[
\text{If } S \text{ contains an NFA-final state}
\]
\[
\text{Mark } S \text{ as DFA-final-state}
\]

Putting the Pieces Together

Regular Expression \(R\) \(\Rightarrow\) NFA Conversion

Input String \(w\) \(\Rightarrow\) DFA Simulation

Yes, if \(w \in L(R)\)
No, if \(w \notin L(R)\)