CS412/413

Introduction to Compilers
Radu Rugina

Lecture 38: Compiling for Modern Architectures
03 May 02

Main Problems

« Need special compiler technology to generate effident code
on modern architectures

« Pipelined machines: scheduling to expose instructions which
can run in parallel in the pipeline, whithout stalls

« Superscalar, VLIW: scheduling to expose instruction which
can run fully in parallel

e Symmetric multiprocessors (SMP): transformations to expose
coarse-grain parallelism

* Memory hierarchies: transformations to improve memory
system performance

« These transformations require knowledge about
dependencies between program instructions

CS 412/413 Spring 2002 Introduction to Compilers 2

Pipelined Machines

* Instructions cannot be executed concurrently in the pipeline
because of hazards:

— Data hazard: results of an instruction not available for a
subsequent instruction

— Control hazard: target of branch not known in the early
stages of the pipeline, cannot fetch next instruction

— Structural hazard: machine resources restrict the number
of possible combinations of instructions in the pipeline

* Hazards produce pipeline stalls
« Instructions can be reordered to avoid hazards

CS 412/413 Spring 2002 Introduction to Compilers 3

Superscalar, VLIW

* Processor can issue multiple instructions in each cycle
. N§1ed to determine instructions which dont depend on each
other
— VLIW: programmer/compiler finds independent
instructions
— Superscalar: hardware detects if instructions are
independent; but compiler must maximize independent
instructions close to each other

o Out-of-order superscalar: burden of instruction scheduling is
partially moved to hardware

* Must detect and reorder instructions to expose fully
independent instructions

CS 412/413 Spring 2002 Introduction to Compilers 4

Symmetric Multiprocessors

* Multiple processing units (as in VLIW)
« ...which execute asynchronously (unlike VLIW)

¢ Problems:
— Overhead of creating and starting threads of execution
— Overhead of synchronizing threads

¢ Conclusion:
— Inefficient to execute single instructions in parallel
— Need coarse grain parallelism

— Compiler must detect larger pieces of code (not just
instructions) which are independent

CS 412/413 Spring 2002 Introduction to Compilers 5

Memory Hierarchies

* Memory system is hierarchically structured: register, L1
cache, L2 cache, RAM, disk

« Top the hierarchy: faster, but fewer
« Bottom of the hierarchy: more resources, but slower

e Memory wall problem: processor speed increases at a higher
rate than memory latency

» Effect: memory accesses have a bigger impact on the
program efficiency

« Need compiler optimizations to improve memory system
performance (e.g. increase cache hit rate)

CS 412/413 Spring 2002 Introduction to Compilers 6

Data Dependencies

« Compiler must reason about dependence between instructions
« Three kinds of dependencies:

- True dependence: (s1) x=...
(s2) ..=x
— Anti dependence: (s1) .. =x
(s2) x= ...

— Output dependence: (s1) x=
(s2) x= ...

e Cannot reorder instructions in any of these cases!

CS 412/413 Spring 2002 Introduction to Compilers 7

Data Dependences

« In the context of hardware design, dependences are called
hazards

— True dependence = RAW hazard (read after write)
— Anti dependence = WAR hazard (write after read)
— Output dependence = WAW hazard (write after read)

« A transformation is correct if it preserves all dependences in
the program

How easy is it to determine dependences?

Trivial for scalar variables (variables of primitive types)
X = ..
=X

CS 412/413 Spring 2002 Introduction to Compilers 8

Problem: Pointers

* Data dependences not obvious for pointer-based accesses

* Pointer-based loads and stores:

(s1) *p=..
(s2) ...=*q

s1, s2 may be dependent if Ptr(p) N Ptr(q) # @

* Need pointer analysis to determine dependent instructions!

* More precise analyses compute smaller pointer sets, can
detect (and parallelize) more independent instructions

CS 412/413 Spring 2002 Introduction to Compilers 9

Problem: Arrays

* Array accesses also problematic:

s1, s2 may be dependent if i=j in some execution of the
program

* Usually, array elements accessed in nested loops, access
expressions are linear functions of the loop indices

* Lot of existing work to formalize the array data dependence
problem in this context

CS 412/413 Spring 2002 Introduction to Compilers 10

Iteration Vectors

* Must reason about nested loops

for (il=1 to N)
for (i2 =1toN)
for (i3=1toN)
[i1,i3] = a[i1,i2]*b[i2,i3]

« Iteration vector: describes multiple indices in nested loops
« Example: i={il, i2, i3}

e Lexicographic ordering: iteration i={iy,...,i,} precedes
J={i1s..rdn} if leftmost non-equal index k is such that i, <jy

CS 412/413 Spring 2002 Introduction to Compilers 11

Loop-Carried Dependences

There is a dependence between statements s1 and s2 if they
access the same location

— In different iterations
— In the same iteration

¢ Loop carried dependence = dependence between accesses in
different iterations

* Bxample: for (i=1 to N) {
a[i+1] = bl[i]
b[i+1] = a[i]

CS 412/413 Spring 2002 Introduction to Compilers 12

Dependence Testing

« Goal: determine if there are dependences between array
accesses in the same loop nest

for (i,=L, to U,)

“for (i, = L, to U,)
ALy o Foligrenin)] = o
e = &G,y s Tlrr)]

« There is a dependence between the array accesses if there
are two iteration vectors i={iy,...,i,} and j={j,--- jm}

f () = g (), for all k

CS 412/413 Spring 2002 Introduction to Compilers 13

Dependence Testing

« If f and g, are all linear functions, then dependence testing
= finding integer solutions of a system of linear equations
(which is an NP-complete problem)

e Example:

for (i=1 to N)
forG=1toN){
a[3i+5, 2] = ...
.. = afj+3, i+i]
¥

« Are there any dependences?

CS 412/413 Spring 2002 Introduction to Compilers 14

Loop Parallelization

* Can parallelize a loop if there is no loop-carried dependence
» If there are dependences, compiler can perform
transformations to expose more parallelism

* Loop distribution:

for (i=1 to N) { for (i=1 to N)
ali+1] = b[i] a[i+1] = bf[i]
c[i] = a[i] I:> for (i=1 to N)
c[i] = a[i]
CS 412/413 Spring 2002 Introduction to Compilers 15

Loop Parallelization
* Loop interchange:

for (i=1 to N) for (j=1 to M)

for (j=1 to M)) | for (i=1toN)

a[i, j+11 = b[i, j] afi, j+1] = b[i, j]
* Scalar expansion:

for (i=1to N) { foz (i=[_1]to NE.]{
tmp = a[i] mpLl] = all
ali=bfl | =y | em=bil
b[i] = tmp) b[i] = tmpli]

CS 412/413 Spring 2002 Introduction to Compilers 16

Loop Parallelization

o Privatization:

int tmp for (i=1to N) {
for (i=1to N) { int tmp
tmp = a[i] |:‘> tmp = a[i]
a[i] = bfi] a[i] = b[i]
b[i] = tmp b[i] = tmp
} }
* Loop fusion:
for (i=1 to N) for (i=1to N) {
a[i] = bfi] :\/\ a[i] = b[i]
for (i=1to N) cfi] = a[i]
o[i] = ali] ¥
CS 412/413 Spring 2002 Introduction to Compilers 17

Memory Hierarchy Optimizations

e Many ways to improve memory accesses
* One way is to improve register usage
— Register allocation targets scalar variables

— Perform transformations to improve allocation of array
elements to registers

e Example:
for (i=1to N) {
for (i=1to N) :- . (a][i]l)
= or (j=1toM
for (j=1to M) :‘ > = j
a[i] = a[i]+b[j] a[it] :t:b[]]
}

CS 412/413 Spring 2002 Introduction to Compilers 18

Blocking

Ancther class of transformations: reorder instructions in
different iterations such that program accesses same array
elements in iterations close to each other

Typical example: blocking (also called tiling)

for (i=1 to N step B)
for (j = 1 to N step B)

for (i=1 to N) for (k = 1 to N step B)
for (j = 1to N) for (ii=i to i+B-1)
for(k=1to N for (jj = j to j+B-1)

)
cfi,j] += alikI*b[k,j] for (kKk = k to k+B-1)

clii,jj] += a[ii,kk]*b[KkK,jj]

CS 412/413 Spring 2002 Introduction to Compilers 19

Software Prefetching

Certain architectures have prefetch instructions which bring
data into the cache

Compiler can insert prefetch instructions in the generated
code to improve memory accesses

Issues:

— Must accurately determine which memory accesses
require prefetching

— Compiler must insert prefetch instructions in such a way
that the required data arrive in the cache neither too late,
nor too soon

CS 412/413 Spring 2002 Introduction to Compilers 20

Predication

Predicated instructions:

— Have a condition argument

— Instruction always executed

— Result discarded if condition is false

Predication can significantly reduce number of branch
instructions (and the associated pipeline stalls)

Example (Pentium):

if (t1=0) cmp $1, t1 cmp $1, t1
t2=t3; jne L1 cmovz t3, t2
else t4=t5; mov t3, t2 cmovn t5, t4
jmp L2
L1: mov t5, t4
L2:

CS 412/413 Spring 2002 Introduction to Compilers 21

Predication

Itanium processor: all instructions are predicated
Can generate predicated code for arbitrary computation

Example:

cmp t1,t2
i = jne L1
(L g)=t4+t5' mov 4, t3 cmp.eq p4,p5=tl, t2
else th=t7-+8: add t5, t3 <p4> add t3=t4, t5
! jmp L2 <p5> add t6=t7, t8
L1: mov t7, t6
add t8, té
L2:
CS 412/413 Spring 2002 Introduction to Compilers 22

