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Main Problems

« Need special compiler technology to generate effident code
on modern architectures

« Pipelined machines: scheduling to expose instructions which
can run in parallel in the pipeline, whithout stalls

« Superscalar, VLIW: scheduling to expose instruction which
can run fully in parallel

e Symmetric multiprocessors (SMP): transformations to expose
coarse-grain parallelism

* Memory hierarchies: transformations to improve memory
system performance

« These transformations require knowledge about
dependencies between program instructions
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Pipelined Machines

* Instructions cannot be executed concurrently in the pipeline
because of hazards:

— Data hazard: results of an instruction not available for a
subsequent instruction

— Control hazard: target of branch not known in the early
stages of the pipeline, cannot fetch next instruction

— Structural hazard: machine resources restrict the number
of possible combinations of instructions in the pipeline

* Hazards produce pipeline stalls
« Instructions can be reordered to avoid hazards
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Superscalar, VLIW

* Processor can issue multiple instructions in each cycle
. N§1ed to determine instructions which dont depend on each
other
— VLIW: programmer/compiler finds independent
instructions
— Superscalar: hardware detects if instructions are
independent; but compiler must maximize independent
instructions close to each other

o Out-of-order superscalar: burden of instruction scheduling is
partially moved to hardware

* Must detect and reorder instructions to expose fully
independent instructions
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Symmetric Multiprocessors

* Multiple processing units (as in VLIW)
« ...which execute asynchronously (unlike VLIW)

¢ Problems:
— Overhead of creating and starting threads of execution
— Overhead of synchronizing threads

¢ Conclusion:
— Inefficient to execute single instructions in parallel
— Need coarse grain parallelism

— Compiler must detect larger pieces of code (not just
instructions) which are independent

CS 412/413 Spring 2002 Introduction to Compilers 5

Memory Hierarchies

* Memory system is hierarchically structured: register, L1
cache, L2 cache, RAM, disk

« Top the hierarchy: faster, but fewer
« Bottom of the hierarchy: more resources, but slower

e Memory wall problem: processor speed increases at a higher
rate than memory latency

» Effect: memory accesses have a bigger impact on the
program efficiency

« Need compiler optimizations to improve memory system
performance (e.g. increase cache hit rate)
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Data Dependencies

« Compiler must reason about dependence between instructions
« Three kinds of dependencies:

- True dependence: (s1) x=...
(s2) ..=x
— Anti dependence: (s1) .. =x
(s2) x= ...

— Output dependence: (s1) x=
(s2) x= ...

e Cannot reorder instructions in any of these cases!
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Data Dependences

« In the context of hardware design, dependences are called
hazards

— True dependence = RAW hazard (read after write)
— Anti dependence = WAR hazard (write after read)
— Output dependence = WAW hazard (write after read)

« A transformation is correct if it preserves all dependences in
the program

How easy is it to determine dependences?

Trivial for scalar variables (variables of primitive types)
X = ..
=X
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Problem: Pointers

* Data dependences not obvious for pointer-based accesses

* Pointer-based loads and stores:

(s1) *p=..
(s2) ...=*q

s1, s2 may be dependent if Ptr(p) N Ptr(q) # @

* Need pointer analysis to determine dependent instructions!

* More precise analyses compute smaller pointer sets, can
detect (and parallelize) more independent instructions
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Problem: Arrays

* Array accesses also problematic:

s1, s2 may be dependent if i=j in some execution of the
program

* Usually, array elements accessed in nested loops, access
expressions are linear functions of the loop indices

* Lot of existing work to formalize the array data dependence
problem in this context
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Iteration Vectors

* Must reason about nested loops

for (il=1 to N)
for (i2 =1toN)
for (i3=1toN)
[i1,i3] = a[i1,i2]*b[i2,i3]

« Iteration vector: describes multiple indices in nested loops
« Example: i={il, i2, i3}

e Lexicographic ordering: iteration i={iy,...,i,} precedes
J={i1s..rdn} if leftmost non-equal index k is such that i, <jy
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Loop-Carried Dependences

There is a dependence between statements s1 and s2 if they
access the same location

— In different iterations
— In the same iteration

¢ Loop carried dependence = dependence between accesses in
different iterations

* Bxample: for (i=1 to N) {
a[i+1] = bl[i]
b[i+1] = a[i]
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Dependence Testing

« Goal: determine if there are dependences between array
accesses in the same loop nest

for (i,=L, to U,)

“for (i, = L, to U,)
ALy o Foligrenin)] = o
e = &G,y s Tlrr)]

« There is a dependence between the array accesses if there
are two iteration vectors i={iy,...,i,} and j={j,--- jm}

f () = g (), for all k
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Dependence Testing

« If f and g, are all linear functions, then dependence testing
= finding integer solutions of a system of linear equations
(which is an NP-complete problem)

e Example:

for (i=1 to N)
forG=1toN){
a[3i+5, 2] = ...
.. = afj+3, i+i]
¥

« Are there any dependences?
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Loop Parallelization

* Can parallelize a loop if there is no loop-carried dependence
» If there are dependences, compiler can perform
transformations to expose more parallelism

* Loop distribution:

for (i=1 to N) { for (i=1 to N)
ali+1] = b[i] a[i+1] = bf[i]
c[i] = a[i] I:> for (i=1 to N)
c[i] = a[i]
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Loop Parallelization
* Loop interchange:

for (i=1 to N) for (j=1 to M)

for (j=1 to M) ) | for (i=1toN)

a[i, j+11 = b[i, j] afi, j+1] = b[i, j]
* Scalar expansion:

for (i=1to N) { foz (i=[_1]to NE. ]{
tmp = a[i] mpLl] = all
ali=bfl | =y | em=bil
b[i] = tmp ) b[i] = tmpli]
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Loop Parallelization

o Privatization:

int tmp for (i=1to N) {
for (i=1to N) { int tmp
tmp = a[i] |:‘> tmp = a[i]
a[i] = bfi] a[i] = b[i]
b[i] = tmp b[i] = tmp
} }
* Loop fusion:
for (i=1 to N) for (i=1to N) {
a[i] = bfi] :\/\ a[i] = b[i]
for (i=1to N) cfi] = a[i]
o[i] = ali] ¥
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Memory Hierarchy Optimizations

e Many ways to improve memory accesses
* One way is to improve register usage
— Register allocation targets scalar variables

— Perform transformations to improve allocation of array
elements to registers

e Example:
for (i=1to N) {
for (i=1to N) :- . (a][i]l )
= or (j=1toM
for (j=1to M) :‘ > = j
a[i] = a[i]+b[j] a[it] :t:b[]]
}
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Blocking

Ancther class of transformations: reorder instructions in
different iterations such that program accesses same array
elements in iterations close to each other

Typical example: blocking (also called tiling)

for (i=1 to N step B)
for (j = 1 to N step B)

for (i=1 to N) for (k = 1 to N step B)
for (j = 1to N) for (ii=i to i+B-1)
for(k=1to N for (jj = j to j+B-1)

)
cfi,j] += alikI*b[k,j] for (kKk = k to k+B-1)

clii,jj] += a[ii,kk]*b[KkK,jj]
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Software Prefetching

Certain architectures have prefetch instructions which bring
data into the cache

Compiler can insert prefetch instructions in the generated
code to improve memory accesses

Issues:

— Must accurately determine which memory accesses
require prefetching

— Compiler must insert prefetch instructions in such a way
that the required data arrive in the cache neither too late,
nor too soon
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Predication

Predicated instructions:

— Have a condition argument

— Instruction always executed

— Result discarded if condition is false

Predication can significantly reduce number of branch
instructions (and the associated pipeline stalls)

Example (Pentium):

if (t1=0) cmp $1, t1 cmp $1, t1
t2=t3; jne L1 cmovz t3, t2
else t4=t5; mov t3, t2 cmovn t5, t4
jmp L2
L1: mov t5, t4
L2:
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Predication

Itanium processor: all instructions are predicated
Can generate predicated code for arbitrary computation

Example:

cmp t1,t2
i = jne L1
(L g)=t4+t5' mov 4, t3 cmp.eq p4,p5=tl, t2
else  th=t7-+8: add t5, t3 <p4> add t3=t4, t5
! jmp L2 <p5> add t6=t7, t8
L1: mov t7, t6
add t8, té
L2:
CS 412/413 Spring 2002 Introduction to Compilers 22




