CS412/413

Introduction to Compilers
Radu Rugina

Lecture 37: DU Chains and SSA Form
29 Apr 02

Outline

¢ Program representations:
— DU chains
—UD chains
— Static Single Assignment

¢ Analysis using DU/UD chains, SSA

CFG Representation

* Accurate analysis: need a representation which captures
program control flow

« Dataflow analysis uses CFG representation
— Graph edges characterize control flow

o Issue: use control flow to compute data flow

« Consequences: analysis of a CFG subgraph may modify only
a small fraction of the dataflow information

« Expensive to propagate all dataflow information along
control flow when most of it remains unchanged

e ... can't we explicitly compute data flow?

CS 412/413 Spring 2002 Introduction to Compilers 2
Example
x=1
int foo(int n) { y=2
intx=1, y=2, t; if (n>1)
if (n>1) { ¥
X =n+x*x; t1= x*x if {...}
} X = n+tl
while (n > 1) { v

CS 412/413 Spring 2002

y= y*nl; if (n>1)
n=n-l;
} y =y*n
return x+y; n=n1
t2 = x+y
return t2

Introduction to Compilers

while {...}

Definitions and Uses

* How can we avoid propagating the information through all

CFG subgraphs?

* While statement:
- modifies y, n

CS 412/413 Spring 2002 Introduction to Compilers 3
Example
x=1
« If statement: y=2
- modifies x, t1 if (n>1)
- doesn't use/define ¥]
v, n, 2 tl= x*x if {...}
x = n+tl
v

- doesn't use/define y = y*n while {...}
x, t1, 12 n=n-1
t2 = x+y
return t2

CS 412/413 Spring 2002

Introduction to Compilers

¢ Solution: for each definition of a variable, identify all
possible uses of that variable

— Directly propagate the information from the definitions

to the uses

— Skip CFG subgraphs that don’t define/use the variable

CS 412/413 Spring 2002 Introduction to Compilers

Definitions and Uses

x=1
Usesof x =1 y=2
- t1=x*x, 2=x+y if (": 1
- no uses in while loop ti= x*x
X = n+tl
Usesof y = 2 ¥
- y=y*n, 2=x+y if (n>1)
- no uses in if statement
y=y*n
n=n-1
12 = x+y
return t2
CS 412/413 Spring 2002 Introduction to Compilers

Def-Use Chains

e Use a list structure = def-use (DU) chain

— For each definition d compute a chain (list) of definitions
that d may reach

— Is a sparse representation of data flow

— Compute information only at the program points where it
is actually used!

« Once we compute DU chains, we don't need the CFG program
representation to perform analysis

— No need to compute information at each program point
— Must re-formulate analysis algorithms using DU chains

CS 412/413 Spring 2002 Introduction to Compilers 8

Analysis Using DU Chains

Can use a worklist algorithm to implement analysis
Initialization: worklist = all instructions

At each step:
— Remove an instruction from the worklist
— Compute effect of the instruction (transfer function)

— Propagate information directly to all the uses (use the
meet operator to merge information)

— Add all the uses to the worklist

Terminate when the worklist is empty

CS 412/413 Spring 2002 Introduction to Compilers

Example: DU Chains

1) x=1 <o DU={4,9}
(2)y=2 = DU={7,9}
3) if (n>1) < DU={}

v

(4) t1= x*x < DU={5}
(5) x = n+tl <« DU={9}
v

(6)if (n>1) N\ < DU={}

(7)y=yn | | < DU=(79)
(8)n=n-1 < DU={6,8}

(9) 12 = x+y < DU={10}
(10) returnt2 | <-——- DU={}

CS 412/413 Spring 2002 Introduction to Compilers 10

DU and UD Chains

UD chains: for each use compute the set of all definitions
which may reach that use

UD, DU chains:
— Same info, encoded differently:
UD[I] = {I'| 1 0 DU[I] }
— Sparse representation of reaching definitions:
DU[I] ={I'| I RD before I'and
3 x . x Odef[I] N use[1}

CS 412/413 Spring 2002 Introduction to Compilers

Static Single Assignment

¢ Idea: rewrite program to explicitly express the DU/UD
relation in the code
e SSA form:
— Each variable defined only once
— Use o@-functions at control-flow join points
« UD relation: for each use of a variable, there is a unique
definition of that variable

* DU relation: for each definition of a variable, set of uses is
set of all uses of that variable

* Results in compact representation of DU/UD relation!

CS 412/413 Spring 2002 Introduction to Compilers 12

Example

Program SSA Form
0 x1=0
X= 1=1
y=1 /
. if (n1>0)
if (n>0) X2 = x14yl
X =Xty |:> else
else y2 =ylxl
y=YyxX o)
x3= @(x1,x2
n = x* !
Y y3= @y1,y2)
n2 = x3*y3
CS 412/413 Spring 2002 Introduction to Compilers 13

Placing @ Functions

Placing @-functions at each join point is inefficient
e Use dominator relation

Dominance frontier of n = nodes w such that n dominates a
predecessor of w, but does not strictly dominate w

Rule: if node n defines variable x, then place a ¢-function for x
at each of the nodes in the dominance frontier of n

Intuition:

- if a definition x=... dominates node n then any path to n
goes through that definition - no need to place any ¢-function

- place ¢-functions at the nodes adjacent to the region of
nodes dominated by x=...

CS 412/413 Spring 2002 Introduction to Compilers 14

Dominator Relation

_ Nodes dominated
by x=x+1

CS 412/413 Spring 2002 Introduction to Compilers 15

Dominance Frontier

_ Dominance frontier
of x=x+1

CS 412/413 Spring 2002 Introduction to Compilers 16

Placing @ Functions

x4= @(x3,x1)

x5= @(x3,x1)
..=X5

x6= p(x2,x3,x5)
...=X6

CS 412/413 Spring 2002 Introduction to Compilers 17

Space Requirements

* SSA representation requires less space than DU chains
* Consider N definitions of x which may reach M uses of x

* Space required for DU chain: N*M

* Space required for SSA form: usually linear in the program
size (N+M)

e Example:

if (...) x=1; if (...) x=2; ...; if (...) x=10;
if (...) y=x+1; if (...) y=x+2; ...; if (...) y=x+20;

CS 412/413 Spring 2002 Introduction to Compilers 18

Analysis Using SSA Form

« Similar to analysis using DU chains

o If we want to compute some information for each variable
(e.g. constant folding): keep a single set of values valid at all
program points

« Flow of values explicitly represented ¢-functions
— Transfer function of @-function is meet operation of
arguments

CS 412/413 Spring 2002 Introduction to Compilers 19

Example

« Functions for x,y,n
« Variables after renaming:
x1,x2,x3; y1,y2,y3; n1,n2,n3

o< X
nwonn
oON =

while (n<10) {

Aliasing and SSA

» Load and store instructions are problematic
— Load: don't know which variable is actually used
— Store: don't know which variable is actually defined

* Conservative approximation:
— Load: insert a function which merges all variables
— Store: insert a @-function for each variable

e With pointer aliasing information:
— Load: merge only the possible targets of the load

— Store: insert @-functions only for variables that may be
modified

* Need to perform pointer analysis before translation to SSA
— Alias analysis = fundamental analysis

CS 412/413 Spring 2002 Introduction to Compilers 21

* Constant folding: X = y*y;
Iteratively compute constant y = X-y;
values for x1-x3, y1-y3, n1-n3 n =n+1;
}
CS 412/413 Spring 2002 Introduction to Compilers 20
Summary

* DU chains: sparse representation of data flow

— Allow efficient implementation: information flows from
definitions directly to the uses

— Must compute DU chains first
e SSA: better representation
— Smaller size than DU chains

— Must efficiently place ¢-functions

* Aliasing information required for either representation

CS 412/413 Spring 2002 Introduction to Compilers 22

