CS412/413

Introduction to Compilers
Radu Rugina

Lecture 30: Objects
10 Apr 02

Records

« Objects combine features of records and abstract data types

* Records = aggregate data structures

— Combine several variables (called fields) into a higher-
level structure

— Type is essentially cartesian product of element types
— Need selection operator to access fields
— Pascal records, C structures

* Example: struct {int x; float f; char a,b,c; inty } A;
— Type: {int x; float f; char a,b,c; inty }
— Selection: Ax = 1; n = Aly;

CS 412/413 Spring 2002 Introduction to Compilers 2

ADTs

Abstract Data Types (ADT): separate implementation from
specification

— Specification: provide an abstract type for data
— Implementation: must match abstract type

« Example: linked list

implementation
Cell = { int data; Cell next; } specification
List = {int len; Cell head, tail; } int length();
int length() { return l.len; } List append (int d);
int first() { return head.data; } int first();
List rest() { return head.next; } List rest();
List append(intd) { ... }

CS 412/413 Spring 2002 Introduction to Compilers 3

Objects as Records

* Objects also have fields
class List {
. - int len;
e ... in addition, they have Cell head, tail;
methods = procedures)
which manipulate the data int length();
(fields) in the object List append(int d);
int first();
« Hence, objects combine } List rest();
data and computation

CS 412/413 Spring 2002 Introduction to Compilers 4

Objects as ADTs

* Specification: public methods and fields of the object

« Implementation: Source code for a class defines the concrete
type (implementation)

class List {
private int len;
private Cell head, tail;

public static int length() {...};
public static List append(int d) {...};
public static int first() {...} ;

public static List rest() {...};

CS 412/413 Spring 2002 Introduction to Compilers 5

Objects

« What objects are:

— Aggregate structures which combine data (fields) with
computation (methods)

— Fields have public/private qualifiers (can model ADTs)
— Also referred to as classes

« Objects interfere with almost all compilation stages:

— Lexical and syntax analysis
— Semantic analysis (type checking!)
— Analysis and optimizations
— Implementation, run-time support

* Features:

— inheritance, subclassing, subtyping, dynamic dispatch

CS 412/413 Spring 2002 Introduction to Compilers 6

Inheritance

« Inheritance = mechanism which exposes common features
of different objects
« Object O1 inherits from 02 =“01 has the features of 01,
plus some additional ones”
— Say that 02 extends O1

class Point {
float x, y;
float getx();
float gety();

class ColoredPoint extends Point {
int color;
int getcolor();

CS 412/413 Spring 2002 Introduction to Compilers 7

Single vs. Multiple Inheritance

« Single inheritance: inherit from only one other object
« Multiple inheritance: inherit from multiple objects

class A { class B {
int a; int b;
int geta(); int getb();
}
classC: A, B{
intc;

int getc();
¥

CS 412/413 Spring 2002 Introduction to Compilers 8

Inheritance and Typing

Inheritance defines a hierarchy between objects
* Objects have types
— Type is cartesian product of field and method types

* What is the relation between types of parent and inherited
objects?

Subtyping: if 02 extends O1 then
— Type(02) is a subtype of Type(01)
— Type(01) is a supertype of Type(02)

02 extends O1

* Notation: Type(02) <: Type(O1)

CS 412/413 Spring 2002 Introduction to Compilers 9

Subtype = Subset

“A value of type S may be used wherever
a value of type T is expected”

S<:T - values(S) O values(T)

values of yalyes of
typeS) type T

CS 412/413 Spring 2002 Introduction to Compilers 10

Subtype Properties

o If type S is a subtype of type T (S <: T), then:
A value of type S may be used wherever a value of type T is
expected (e.g., assignment to a variable, passed as
argument, returned from method)

Point x; ColoredPoint <: Point
ColoredPoint y; 1 1
X=y; subtype supertype

Polymorphism: a value is usable at several types

e Subtype polymorphism: code using T's can also use S's; S
objects can be used as S's or T's.

CS 412/413 Spring 2002 Introduction to Compilers 11

Objects and Typing

* Objects have types
— ... but also have implementation code for methods

e ADT perspective:
— Specification = typing
— Implementation = method code, private fields
— Objects mix specification with implementation

* Can we separate types from implementation?

CS 412/413 Spring 2002 Introduction to Compilers 12

Interfaces

« Interfaces are pure types; they don't give any
implementation

implementation L
specification
class MyList implements List {
private int len; interface List {
private Cell head, tail; int length();
List append(int d);
public int length() {...}; int first();
public List append(int d) {...}; List rest();
public int first() {...} ; 3
public List rest() {...};
CS 412/413 Spring 2002 Introduction to Compilers 13

Multiple Implementations

* Interfaces allow multiple implementations

interface List { class SimpleList impls List {
int length(); private int data;
List append(int); = private SimpleList next;
int first(); public int length()
List rest(); } { return 1+next.length() } ...

g

class LenList implements List {
private int len;
private Cell head, tail;
private LenList() {...}
public List append(int d) {...}
public int length() { return len; }

CS 412/413 Spring 2002 Introduction to Compilers 14

Subtyping vs. Subclassing
e (Can use inheritance for interfaces
— Build a hierarchy of interfaces

interface A {...} B<:A
interface B extends A {...}

* Objects can implement interfaces
class C implements A {...}
« Subtyping: interface inheritance

« Subclassing: object (class) inheritance
— Subclassing implies subtyping

CS 412/413 Spring 2002 Introduction to Compilers 15

Abstract Classes

» Classes define types and some values (methods)
« Interfaces are pure object types

o Abstract classes are halfway:
— define some methods
— leave others unimplemented
— no objects (instances) of abstract class

CS 412/413 Spring 2002 Introduction to Compilers 16

Subtypes in Java

interface I, class C class C;
extends I, { ... } implementsI{ ...} extendsC,

I|2 ! @
I, C C
I <L C<:1I C, <G

CS 412/413 Spring 2002 Introduction to Compilers 17

Subtyping Properties

o Subtype relation is reflexive: T <: T
e Transitive: R<:S andS<:T
implesR<: T
¢ Anti-symmetric:
T, <TLAT,<T,=>T,=T,

» Defines a partial ordering on types!
» Use diagrams to describe typing relations

CS 412/413 Spring 2002 Introduction to Compilers 18

Subtype Hierarchy

¢ Introduction of subtype relation creates a
hierarchy of types: subtype hierarchy

I1
— T
typeor |[Cl 12 3
subtype [N
i 2 c4
hierarchy C| 3 class/inheritance
hierarchy
C5
CS 412/413 Spring 2002 Introduction to Compilers 19

Type-checking
¢ Problem: what are the valid types for an object?

e Subsumption rule connects subtyping relation
and ordinary typing judgements

A+E:
ls_ . TS S<:T-
SR - values(S) O values(T)
AHE:T

« "“If expression E has type S, it also has type T
for every T such that S <: T”

CS 412/413 Spring 2002 Introduction to Compilers 20

Implementing Type-checking

¢ Next problem: static semantics is supposed to
find a type for every expression, but objects
may have (in general) many types

I1
. . — T
e Which type to pick? c1 I2 13
[N
C2 .3 C4
I
C5
CS 412/413 Spring 2002 Introduction to Compilers 21

Principal Type

o Idea: every expression has a principal type
that is the most-specific type of the
expression

1
— T
Ccl 12 13
(N
¢ Can use subsumption rule C2 C3 C4
to infer all supertypes if
principal type is used
CS 412/413 Spring 2002 Introduction to Compilers 22

Type-checking Overview

¢ Rules for checking code must allow a subtype
where a supertype was expected

¢ Old rule for assignment:
id: TOA
A-HE:T
Ar-id=E:T

What needs to change here?

CS 412/413 Spring 2002 Introduction to Compilers 23

Type-checking Overview

o Rules for checking code must allow a subtype
where a supertype was expected

¢ New rule for assignment:
ARE:T,)

T < T A-E:S id: TOA
P — . .
id:TOA = S<:T 4+ AFRE:T
ArFid=E:T ARE:T A-id=E :T

CS 412/413 Spring 2002 Introduction to Compilers 24

Type-checking Code

class Assignment extends ASTNode {
Variable var; ExprNode E;

Type typeCheck() {

Type Tp = E.typeCheck();
Type T = var.getType();

if (Tp.subtypeOf(T)) return T;
else throw new TypecheckError(E); }}

AFE:T,

T, <:T

id:TOA

A-id=E: T

CS 412/413 Spring 2002

Introduction to Compilers

25

The Dispatching Problem
« Problem: don’t know what code to run at compile time!

List a;

if (cond) { a = new SimpleList(); }
else { a = new LenList(); }
a.length()

= SimpleList.length() or LenList.length() ?

* Objects must “know” their implementation at run time
* Method invocations must be resolved dynamically

¢ Dynamic dispatch: run-time mechanism to select the
appropriate method, depending on the object type

CS 412/413 Spring 2002 Introduction to Compilers 26

Implementing Dynamic Dispatch

¢ Objects implemented
by adding extra pointer ~ SimpleList

to dispatch vector
(also: virtual table)

with pointers to
method code

« Code receiving List x
only knows x has initial
dispatch vector pointer LenList

List

CS 412/413 Spring 2002

Introduction to Compilers

dispatch
vector
SimpleList.length
data SimpleList.first
next SimpleList.rest
dispatch
vector
LenList.length
len LenList.first
ﬁ LenList.rest

27

