CS412/413

Introduction to Compilers
Radu Rugina

Lecture 29: Finishing Code Generation
08 Apr 02

Putting Things Together

e Accessing variables

— Global variables: using their static addresses

— Function arguments and spilled variables (local variables
and temporaries): using frame pointer

— Variables assigned to registers: using their registers

o Instruction selection

— Need to know which variables are in registers and which
variables are spilled on stack

Register allocation
— No need to allocate a register to a value inside a tile

Code Generation Flow

Start with low-level IR code

Build DAG of the computation
— Access global variables using static addresses
— Access function arguments using frame pointer
— Assume all local variables and temporaries are in registers
(assume unbounded number of registers)
Generate abstract assembly code
— Perform tiling of DAG

Register allocation
— Live variable analysis over abstract assembly code
— Assign registers and generate assembly code

CS 412/413 Spring 2002 Introduction to Compilers 3

CS 412/413 Spring 2002 Introduction to Compilers 2
Example
Program Low IR
tl = addr a
: t2 = x+i
arrayfint] a
rraylint] 2 = 2%4
function f:(int x) { tl=t+t2
inti; 13 = [t1]
I:> 3 = 13+1
i " t4 = addr a
a[x+i] = a[x+i] + 1; -
bt D] t5 = x+i
} t5 = t5%4
t4 = t4+t5
[t4] =3
CS 412/413 Spring 2002 Introduction to Compilers 4

Accesses to Function Arguments

tl = addra
tl = addra :g : ?t%p])+8
2 = x+i t2 = 7+
2 =t2*4 t2 = t2*4
tl =t1+t2 tl = t1+t2
t3 = [t1] t3 = [t1]
3 =t3+1 t3 = t3+1
t4 = addr a t4 = addr a
t5 = x+i t8=ebp+8
t5 = t5%4 tg = [;8]_
t4 = t4+t5 ey
t4] = t3 t5 = t5%4
[t4 = ta+5

[t4] =3

CS 412/413 Spring 2002 Introduction to Compilers 5

DAG Construction

tl =addra
t6 = ebp+8 =
t7 = [t6] < N
2 = t7+i 7
2 = t2*4 [1]
t = t1+t2 !

t3 =[t1] 2N

3 =13+1 *_ addr a
t4 = addr a |::> + \4
t8=ebp+8 e \[

t9 = [t8] !
t5 = to+i +
t5 = t5*4 /N

t4 = t4+t5 ebp 8

[t4] = 83

CS 412/413 Spring 2002 Introduction to Compilers 6

Tiling

Find tiles
— Maximal Munch
— Dynamic programming

Temporaries to transfer
values between tiles

No temporaries inside any
of the tiles

CS 412/413 Spring 2002 Introduction to Compilers 7

Abstract Assembly Generation

Abstract Assembly

mov addr a, t1

mov 8(%ebp), t3
|::> mov i, t2

add t3, t2
add 1, (t1,t2,4)

CS 412/413 Spring 2002 Introduction to Compilers 8

Register Allocation

Live Variables

Register Allocation

Live Variables

Abstract Assembly
{%ebp, i}
mov addr a, t1
{%ebp,t1,i}
mov addr a, t1 mov 8(%ebp), t3
mov 8(%ebp), t3 {t1, t3, i}
mov i, t2 |::> mov i, t2
add t3, t2 {t1,t2,t3}
add 1, (t1,t2,4) add t3, t2
{t1,2}
add 1, (t1,t2,4)
&
CS 412/413 Spring 2002 Introduction to Compilers 9

{%ebp, i} « Build interference graph
mov addr a, t1) -
{%ebp,i,t1} i —
mov 8(%ebp), t3 / N/ \
{t1, t3, i} %ebp— t1 — t2
mov i, t2
{t1,t2,t3})
add t3, t2 « Allocate registers:
{t1,t2} eax: t1, ebx: t3
add 1, (t1,22,4) i, t2 spilled to memory
&
€5412/413 Spring 2002 Introduction to Compilers 10

Assembly Code Generation

Abstract Assembly Assembly Code
mov addr a, %eax
mov addr a, t1 mov 8(%ebp), %ebx
mov _8(%ebp), t3 mov —12(%ebp), %ecx
mov i, t2 |::> mov %ecx, -16(%ebp)

add t3, 2 add %ebx, -16(%ebp)
add 1, (t1,£2,4) mov —16(%ebp), %ecx
add $1, (%Yeax,%ecx,4)

Register allocation results:
eax: t1; ebx: t3; i, t2 spilled to memory

CS 412/413 Spring 2002 Introduction to Compilers 11

Other Issues

« Translation of function calls
— Pre-call code
— Post-call code

« Translation of functions
— Prologue code
— Epilogue code

« Saved registers
— If caller-save register is live after call, must save it before
call and restore it after call
— If callee-save register is allocated within a procedure,
must save it at procedure entry and restore at exit

CS 412/413 Spring 2002 Introduction to Compilers 12

Advanced Code Generation

¢ Modern architectures have complex features

o Compiler must take them into account to
generate good code

¢ Features:
— Pipeline: several stages for each instruction
— Superscalar: multiple execution units execute
instructions in parallel
— VLIW (very long instruction word): multiple
execution units, machine instruction consists of a set
of instructions for each unit

CS 412/413 Spring 2002 Introduction to Compilers 13

Pipeline

« Example pipeline:
— Fetch
— Decode |Fetch| Dec | Exe |Mem| WB |
— Execute
— Memory access
— Write back

* Simultaneously execute stages of different instructions

Instr 1 |Fetch| Dec | Exe |Mem| WB

Instr 2 Fetch| Dec | Exe |Mem | WB
Instr 3 Fetch| Dec | Exe |Mem | WB
CS 412/413 Spring 2002 Introduction to Compilers 14

Stall the Pipeline
o It is not always possible to pipeline instructions

* Example 1: branch instructions

Branch |Fetch| Dec | Exe |Mem| WB
Target Fetch| Dec | Exe |Mem| WB |

¢ Example 2: load instructions
Load |Fetch| Dec | Exe |Mem| WB
Use Fetch| Dec | Exe Meml WB|

CS 412/413 Spring 2002 Introduction to Compilers 15

Filling Delay Slots

* Some machines have delay slots
* Compiler can generate code to fill these slots and keep the

pipeline busy

e Branch instructions

- Fill delay slot with instruction which dominates the
branch, or which is dominated by the branch
— Compiler must determine that it is safe to do so

e Load instructions

— If next instruction uses result, it will get the old value

— Compiler must re-arrange instructions and ensure next
instruction doesn’t depend on results of load

CS 412/413 Spring 2002 Introduction to Compilers 16

Superscalar

o Processor has multiple execution units and can execute
multiple instruction simultaneously

o ... only if it is safe to do so!

* Hardware checks dependencies between instructions

o Compiler can help: generate code where consecutive
instructions can execute in parallel
— Again, need to reorder instructions

CS 412/413 Spring 2002 Introduction to Compilers 17

VLIW

¢ Machine has multiple execution units
¢ Long instruction: contains instructions for each

execution unit

Compiler must parallelize code: generate a machine
instruction which contains independent instructions for
all the units

If cannot find enough independent instructions, some
units will not be utilized

Compiler job very similar to the transformation for
superscalar machines

CS 412/413 Spring 2002 Introduction to Compilers 18

Instruction Scheduling

» Instruction scheduling = reorder instructions to improve
the parallel execution of instructions

— Pipeline, superscalar, VLIW
o Essentially, compiler detects parallelism in the code

o Instruction Level Parallelism (ILP) = parallelism
between individual instructions

— Instruction scheduling: reorder instructions to expose ILP

CS 412/413 Spring 2002 Introduction to Compilers

Instruction Scheduling

« Many techniques for instruction scheduling

o List scheduling
— Build dependence graph

— Schedule an instruction if all its predecessors have been
scheduled

— Many choices at each step: need heuristics

e Scheduling across basic blocks
— Move instructions past control flow split/join points
— Move instruction to successor blocks
— Move instructions to predecessor blocks

CS 412/413 Spring 2002 Introduction to Compilers 20

Instruction Scheduling

Another approach: try to increase basic blocks
— Then schedule the large blocks

Trace scheduling
— Use profiling to find common execution paths

— Combine basic blocks in the trace into a larger block
— Schedule the trace

— Problem: need cleanup code if program leaves trace
* Duplicate basic blocks
e Loop unrolling

CS 412/413 Spring 2002 Introduction to Compilers 21

Instruction Scheduling

¢ Can also schedule across different iterations of loops

s Software pipelining
— Overlap loop iterations to fill delay slots

— If latency between instructions i1 and i2 in some loop

iteration, change loop so that i2 uses results of i1 from
previous iteration

— Need to generate additional code before and after the loop

CS 412/413 Spring 2002 Introduction to Compilers 22

Where We Are

Source Program

Assembly Code

CS 412/413 Spring 2002 Introduction to Compilers 23

