CS412/413

Introduction to Compilers
Radu Rugina

Lecture 26: Instruction Selection
01 Apr 02

Instruction Selection

target machine

Different sets of instructions in low-level IR and in the

Instruction selection = translate low-level IR to

assembly instructions on the target machine

Straightforward solution: translate each low-level IR

instruction to a sequence of machine instructions

o Example:

X=y+z

CS 412/413 Spring 2002

mov y, rl

mov z, r2
C addr2, r1

mov rl, x

Introduction to Compilers

Instruction Selection

* Problem: straightforward translation is inefficient

— One machine instruction may perform the computation in
multiple low-level IR instructions

« Consider a machine with includes the following instructions:

addr2, r1 rl « ri+r2
mulc ¢, r1 rl — ri*c
load r2, r1 rl « [r2]
store r2, r1 [rl] - r2
movem r2, ri [r1] « [r2]

movex r3, r2, r1 [r1] < [r2+r3]

CS 412/413 Spring 2002 Introduction to Compilers 3

« Consider the computation: a[i] = b[j]

e Assume a,b, i, j are global variables
register ra holds address of a
register rb holds address of b
register ri holds value of i
register rj holds value of j

CS 412/413 Spring 2002

Example

Low-level IR:
tl = addrb
t2 = j*4

t3 = t1+t2
t4 = [t3]

t5 = addr a
t6 = i*4

t7 = t5+t6
[t7] =t4

Introduction to Compilers

Possible Translation

Low-level IR:
. . tl = addr b
e Address of b[jl: mulc 4, rj , 2 = j*4
add rj, b 13 = ti+t2
e Load value b[j]: load rb, r1 t4 = [t3]
.) t5 = addr a
o Address of a[i]: rr(ljl:jlc .4, ri { 6 = i*4
addrn, ra t7 = t5+t6
o Store into a[i]: storeri, ra [t7] =t4
CS 412/413 Spring 2002 Introduction to Compilers 5

Another Translation

« Address of b[j]:

o Address of a[i]:

¢ Load and store:

CS 412/413 Spring 2002

add rj, rb

mulc 4, ri
. —_—
addri, ra

movem rb, ra

mulc 4, rj {

Low-level IR:
tl = addr b
t2 = j*4

B3 =t1+t2
t4 = [t3]

t5 = addr a
t6 = i*4

t7 = t5+t6
[t7] = t4

Introduction to Compilers

Yet Another Translation

Low-level IR:
tl =addrb
e Index value: mulc4,j —— {| =54
t3 = t1+t2
t4 = [t3]
. . t5 = addr a
e Address of a[il: mulc .4, ri { t6 = i*4
add ri, ra t7 = t5+t6
e Load and store: movex rj, rb, ra [t7] =t4
CS 412/413 Spring 2002 Introduction to Compilers 7

Issue: Instruction Costs

« Different machine instructions have different costs
— Time cost: how fast instructions are executed
— Space cost: how much space instructions take

« Example: cost = number of cycles

addr2, r1 cost=1
mulcc, rl cost=10
load r2, r1 cost=3
store r2, r1 cost=3
movem r2, rl cost=4
movex r3, r2, rl cost=5

e Goal: find translation with smallest cost

CS 412/413 Spring 2002 Introduction to Compilers 8

How to Solve the Problem?

Tree Representation

e Goal: determine parts of the tree which

correspond to machine instructions Low-level IR:
a bri = tl = addrb
P
[[3 =t1+t2
| | t4 = [t3]
PN PN t5 = addr a
addra x addrb t6 = i*4
7 \4 4 \4 t7 = t5+t6
: J [t7] = t4
CS 412/413 Spring 2002 Introduction to Compilers 10

» Difficulty: low-level IR instruction Low-level TR:
matched by a machine instructions '
may not be adjacent t1 = addr b
t2 = j*4

e Example: movem rb, ra t3 = t1+t2
\ { t4 = [t3]

t5 = addr a
« Idea: use tree-like representation! t6 = i*4

« Easier to detect matching 7 = t5+t6
instructions { [t7] =t4

CS 412/413 Spring 2002 Introduction to Compilers 9
Tiles
e Tile = tree patterns (subtrees)
corresponding to machine instructions Low-level IR:
movem rb, ra t1 = addr b
t2 = j*4
13 = t1+t2
t4 = [t3]
" " t5 = addr a
TN N t6 = i*4
addra addr b -
PN PN t7 = t5+t6
i 4 i 4 [t7] = t4
CS 412/413 Spring 2002 Introduction to Compilers 11

Tiling
e Tiling = find the set of disjoint tiles
that covers the tree

Machine code:

mulc 4, rj
add rj, rb
mulc 4, ri

7 Z add ri, ra
addr a addr b movem rb, ra

CS 412/413 Spring 2002 Introduction to Compilers 12

Other Possible Tilings

storerl, ra movex rj, rb, ra

/+ /+

CS 412/413 Spring 2002 Introduction to Compilers 13

Directed Acyclic Graphs

« Tree representation: appropriate for instruction selection
— Tiles = subtrees - machine instructions

* DAG = more general structure for representing instructions
— Common sub-expressions represented by the same node
— Tile the expression DAG

e Example: %
t=y+1 7N
*t AN
y=z |:‘>
t=t+l z A1
z =ty y 1
CS 412/413 Spring 2002 Introduction to Compilers 14

Big Picture

o What the compiler has to do:
1. Translate low-level IR code into DAG representation

2. Then find a good tiling of the DAG
- Maximal munch algorithm
- Dynamic programming algorithm

CS 412/413 Spring 2002 Introduction to Compilers 15

DAG Construction

Input: a sequence of low IR instructions in a basic block
Output: an expression DAG for the block

o Idea:
— Label each DAG node with variable which holds that value
— Build DAG bottom-up

* Problem: a variable may have multiple values in a block

» Solution: use different variable indices for different
values of the variable: t,, t,, t,, etc.

CS 412/413 Spring 2002 Introduction to Compilers 16

Algorithm

index[v] = 0 for each variable v

For each instruction I (in the order they appear)
For each v that I directly uses, with n=index[v]
if node v, doesn't exist
create node v, , with label v,
Create expression node for instruction I, with children
{Vy | v Ouse[I] }
For each v[ldef[I]
index[v] = index[v] + 1

If I is of the form x = ... and n = index[x]
label the new node with x,,

CS 412/413 Spring 2002 Introduction to Compilers 17

Issues

¢ Function calls
— May update any global variable
— def[I] = set of global variables

¢ Store instructions
— May update any variable
— If stack addresses are not taken (e.g. Java),
def[I] = set of heap variables

CS 412/413 Spring 2002 Introduction to Compilers 18

Local Variables in DAG

» Use stack pointers to access local variables

e Example: x = y+1

CS 412/413 Spring 2002 Introduction to Compilers 19

Next: DAG Tiling

¢ Goal: find a good covering of DAG with tiles
o Problem: need to know what variables are in registers

e Assume abstract assembly:
— Machine with infinite number of registers
— Temporary variables stored in registers
— Local/global/heap variables: use memory accesses

CS 412/413 Spring 2002 Introduction to Compilers 20

Problems

« Classes of registers
— Registers may have specific purposes
— Example: Pentium multiply instruction
- multiply register eax by contents of another register
- store result in eax (low 32 bits) and edx (high 32 bits)
- need extra instructions to move values into eax

e Two-address machine instructions
— Three-address low-level code
— Need multiple machine instructions for a single tile

e CISC versus RISC

— Complex instruction sets => many possible tiles and tilings

— Example: multiple addressing modes (CISC) versus
load/store architectures (RISC)

CS 412/413 Spring 2002 Introduction to Compilers 21

Pentium ISA

* Pentium: two-address CISC architecture

General-purpose registers: eax, ebx, ecx, edx, esi, edi
« Stack registers: ebp, esp

Typical instruction:

— Opcode (mov, add, sub, mul, div, jmp, etc)

— Destination and source operands

Multiple addressing modes: source operands may be

— Immediate value: imm

— Register: reg

— Indirect address: [reg], [imm], [reg+imm],

— Indexed address: [reg+reg’], [reg+imm*reg’],
[reg+imm*reg’+imm’]

« Destination operands = same, except immediate values

CS 412/413 Spring 2002 Introduction to Compilers 22

Example Tiling

Consider:t = t+i
t = temporary variable
i = local variable

* Need new temporary registers
between tiles (unless operand
node is labeled with temporary)

* Result code:
mov %ebp, t0
sub $20, t0
mov (t0), t1
addti, t

* Note: also compute i, if it is live

CS 412/413 Spring 2002 Introduction to Compilers 23

Some Tiles

mov t2, t1 o mov
$10, (t1,t2)

t 2

3

mov t2, t3 “ mov t1, %eax 3
add t1, 3 i mul £2 @
tl 2

mov %eax, t3 0

CS 412/413 Spring 2002 Introduction to Compilers 24

Conditional Branches Load Effective Address

o How to tile a conditional jump? o Lea instruction computes a memory address
o Fold comparison into tile » Doesn't actually load the value from memory
t3
;
:
t1 t2 t 2 u
t2
test t1,t1 cmp t1,t2
jnz L je L lea (t1,t2), t3 lea (t1,t2,8), t3

CS 412/413 Spring 2002 Introduction to Compilers 25 CS 412/413 Spring 2002 Introduction to Compilers 26

