CS412/413

Introduction to Compilers
Radu Rugina

Lecture 24: Induction Variable Optimizations
27 Mar 02

Induction Variables

- Two categories of induction variables
- Basic induction variables: only incremented in loop body
 \(i = i + c \)
 where \(c \) is a constant (positive or negative)
- Derived induction variables: expressed as a linear function of an induction variable
 \(k = c^i + d \)
 where:
 - \(j \) is basic induction variable
 - \(j \) is derived induction variable in the family of \(i \), and:
 1. No definition of \(j \) outside the loop reaches definition of \(k \)
 2. \(i \) is not defined between the definitions of \(j \) and \(k \)

Families of Induction Variables

- Each basic induction variable defines a family of induction variables
 - Each variable in the family of \(i \) is a linear function of \(i \)
- A variable \(k \) is in the family of basic variable \(i \) iff:
 1. \(k = i \) (the basic variable itself)
 2. \(k \) is a linear function of other variables in the family of \(i \):
 \[k = c^i + d, \text{ where } j \in \text{Family}(i) \]
- A triple \(<i, a, b> \) denotes an induction variable \(k \) in the family of \(i \) such that:
 - \(k = ia + b \)
 - Triple for basic variable \(i \) is \(<i, 1, 0> \)

Dataflow Analysis Formulation

- Detection of induction variables: can formulate problem using the dataflow analysis framework
 - Analyze loop sub-graph, except the back edge
 - Analysis is similar to constant folding
- Dataflow information: a function \(f \) that assigns a triple to each variable:
 \[f(i) = <c, a, b>, \text{ if } k \text{ is an induction variable in family of } i \]
 \[f(k) = \perp : k \text{ is not an induction variable} \]
 \[f(k) = T : \text{don't know if } k \text{ is an induction variable} \]

Dataflow Analysis Formulation

- Meet operation: if \(f_1 \) and \(f_2 \) are two functions, then:
 \[(f_1 \land f_2)(v) = \begin{cases} <c, a, b> \text{ if } f_1(v) = f_2(v) = <c, a, b> \\ \perp, \text{ otherwise} \end{cases} \]
 (in other words, use a lattice)
- Initialization:
 - Detect all basic induction variables
 - At loop header: \(f(i) = <1, 0> \) for each basic variable \(i \)
- Transfer function:
 - Consider \(f \) is information before induction \(I \)
 - Compute information \(f \) after \(I \)
Dataflow Analysis Formulation

- For a definition \(k = j \cdot c \), where \(k \) is not basic induction variable
 \[F(v) = \langle a, b, c \rangle, \text{ if } v = k \text{ and } F(\beta) = \langle a, b, c \rangle \]
 \[F(v) = F(v), \text{ otherwise} \]

- For a definition \(k = j \cdot c \), where \(k \) is not basic induction variable
 \[F(v) = \langle a, b, c, b \cdot c \rangle, \text{ if } v = k \text{ and } F(\beta) = \langle a, b, c \rangle \]
 \[F(v) = F(v), \text{ otherwise} \]

- For any other instruction and any variable \(k \) in def[1] :
 \[F(v) = \langle a, b, c \rangle, \text{ if } v = k \text{ and } F(\beta) = \langle a, b, c \rangle \]
 \[F(v) = F(v), \text{ otherwise} \]

Strength Reduction

- Basic idea: replace expensive operations (multiplications) with cheaper ones (additions) in definitions of induction variables
 \[s = 3^j+1; \]
 \[\text{while } (<10) \{ \]
 \[j = 3^j; \]
 \[a[j] = a[j] - 2; \]
 \[i = i + 2; \]
 \[i = i + 2; \]
 \[\} \]

- Benefit: cheaper to compute \(s = 3^j+1 \) than \(j = 3^j \)
 - \(s = 3^j+1 \) requires an addition
 - \(j = 3^j \) requires a multiplication

General Algorithm

- Algorithm:
 - For each induction variable \(j \) with type \(\langle a, b, c \rangle \)
 - create a new variable \(s \)
 - replace definition of \(j \) with \(s \)
 - immediately after \(i = i + c \), insert \(s = s + a \cdot c \)
 (here \(a \cdot c \) is constant)
 - insert \(s = a \cdot c + b \) into preheader
 - Correctness: this transformation maintains the invariant that \(s = a \cdot c + b \)

Strength Reduction

- Gives opportunities for copy propagation, dead code elimination
 \[s = 3^j+1; \]
 \[\text{while } (<10) \{ \]
 \[j = 3^j; \]
 \[a[j] = a[j] - 2; \]
 \[i = i + 2; \]
 \[i = i + 2; \]
 \[\} \]
 \[s = 3^j+1; \]
 \[\text{while } (<10) \{ \]
 \[j = 3^j; \]
 \[a[j] = a[j] - 2; \]
 \[i = i + 2; \]
 \[i = i + 2; \]
 \[\} \]

Induction Variable Elimination

- Idea: eliminate each basic induction variable whose only uses are in loop test conditions and in their own definitions
 - rewrite loop test to eliminate induction variable
 \[s = 3^j+1; \]
 \[\text{while } (<10) \{ \]
 \[a[s] = a[s] - 2; \]
 \[i = i + 2; \]
 \[s = s + 6; \]
 \[\} \]

- When are induction variables used only in loop tests?
 - Usually, after strength reduction
 - Use algorithm from strength reduction even if definitions of induction variables don’t involve multiplications

Induction Variable Elimination

- Rewrite test condition using derived induction variables
 - Remove definition of basic induction variables (if not used after the loop)
 \[s = 3^j+1; \]
 \[\text{while } (<10) \{ \]
 \[a[s] = a[s] - 2; \]
 \[i = i + 2; \]
 \[s = s + 6; \]
 \[\} \]
Induction Variable Elimination

For each basic induction variable \(i \) whose only uses are
- The test condition \(i < u \)
- The definition of \(i = i + c \)

For each derived induction variable \(k \) in its family, with triple \(i; c; d \)
 - Replace test condition \(i < u \) with \(k < c u + d \)
 - Remove definition \(i = i + c \) if \(i \) is not live on loop exit

Where We Are

- Defined dataflow analysis framework
- Used it for several analyses
 - Live variables
 - Available expressions
 - Reaching definitions
 - Constant folding
- Loop transformations
 - Loop invariant code motion
 - Induction variables
- Next:
 - Pointer alias analysis

Pointer Alias Analysis

- Most languages use variables containing addresses
 - E.g. pointers (C/C++, references (Java), call-by-reference parameters (Pascal, C++, Fortran)
- **Pointer aliases**: multiple names for the same memory location, which occur when dereferencing variables that hold memory addresses
- **Problem**:
 - Don't know what variables read and written by accesses via pointer aliases (e.g. \(*p\), \(x = *p\), \(p.f\), \(x = p.f\), etc.)
 - Need to know accessed variables to compute dataflow information after each instruction

Alias Analysis Problem

- **Goal**:
 - For each variable \(v \) that may hold an address, compute the set \(\text{Pr}(v) \) of possible targets of \(v \)
 - \(\text{Pr}(v) \) is a set of variables (or objects)
 - \(\text{Pr}(v) \) includes stack- and heap-allocated variables (objects)
 - Is a "may" analysis: if \(x \in \text{Pr}(v) \), then \(v \) may hold the address of \(x \) in some execution of the program
 - **No alias information**: for each variable \(v \), \(\text{Pr}(v) = V \), where \(V \) is the set of all variables in the program

Simple Alias Analyses

- **Address-taken analysis**:
 - Consider \(AT \) = set of variables whose addresses are taken
 - Then, \(\text{Pr}(v) = AT \), for each pointer variable \(v \)
 - Addresses of heap variables are always taken at allocation sites (e.g. \(x = \text{new int}[2] \), \(x = \text{malloc}(8) \))
 - Hence \(AT \) includes all heap variables
- **Type-based alias analysis**:
 - If \(v \) is a pointer (or reference) to type \(T \), then \(\text{Pr}(v) \) is the set of all variables of type \(T \)
 - Example: \(p \) and \(q \) can be aliases only if \(p \) and \(q \) are references to objects of the same type
 - Works only for strongly-typed languages
Dataflow Alias Analysis

- **Dataflow analysis**: for each variable \(v \), compute points-to set \(\text{Pt}(v) \) at each program point.

- **Dataflow information**: set \(\text{Pt}(v) \) for each variable \(v \)
 - Can be represented as a graph \(G \subseteq 2^{V \times V} \)
 - Nodes = \(V \) (program variables)
 - There is an edge \(v \rightarrow u \) if \(u \in \text{Pt}(v) \)

\[
\begin{align*}
\text{Pt}(x) &= \{ y \} \\
\text{Pt}(y) &= \{ x, t \}
\end{align*}
\]

Dataflow Alias Analysis

- **Dataflow lattice**: \((2^{V \times V}, \supseteq) \)
 - \(V \times V \) is set of all possible points-to relations
 - "may" analysis: top element is \(\supseteq \), meet operation is \(\cup \)

- **Transfer functions**: use standard dataflow transfer functions:
 \[\text{out}[I] = (\text{in}[I] \cup \text{kill}[I]) \cup \text{gen}[I]\]
 \[p = \text{addr} q \quad \text{kill}[I] = (p \times V) \quad \text{gen}[I] = ((p, p))\]
 \[p = q \quad \text{kill}[I] = (p \times V) \quad \text{gen}[I] = (p \times \text{Pt}(q))\]
 \[\text{if} = p \quad \text{kill}[I] = (p) \times \text{Pt}(p) \quad \text{gen}[I] = (p \times \text{Pt}(p))\]

- Transfer functions are monotonic, but not distributive!

Alias Analysis Example

- Program:
 \[x = \text{ba}; \quad y = \text{bb}; \quad c = \text{ci}; \quad \text{if}(I) = x = y; \quad \#x = c\]

- CFG:

- Points-to Graph (at the end of program):

Alias Analysis Uses

- Once alias information is available, use it in other dataflow analyses

- **Example**: Live variable analysis
 - Use alias information to compute \(\text{use}[I] \) and \(\text{def}[I] \) for load and store statements:

\[
\begin{align*}
x &= [y] \quad \text{use}[I] = \{ y \} \cup \text{Pt}(y) \quad \text{def}[I] = \{ x \} \\
[x] &= y \quad \text{use}[I] = \{ x, y \} \quad \text{def}[I] = \text{Pt}(x)
\end{align*}
\]