CS412/413

Introduction to Compilers
Radu Rugina

Lecture 23: Control Flow Analysis
25 Mar 02

Program Loops

o Loop = a computation repeatedly executed until a
terminating condition is reached

* High-level loop constructs:
— While loop: while(E) S
— Do-while loop: do S while(E)
- For loop: for(i=l, i<=u, i+=c) S

* Why are loops important:
— Most of the execution time is spent in loops
— Typically: 90/10 rule, 10% code is a loop

« Therefore, loops are important targets of optimizations

CS 412/413 Spring 2002 Introduction to Compilers 3

Outline

¢ Control flow analysis

— Detect loops in control flow graphs
— Dominators

¢ Loop optimizations
— Code motion

— Strength reduction for induction variables
— Induction variable elimination

CS 412/413 Spring 2002 Introduction to Compilers

Detecting Loops

* Need to identify loops in the program
— Easy to detect loops in high-level constructs

— Difficult to detect loops in low-level code or in general
control-flow graphs

o Examples where loop detection is difficult:
— Languages with unstructured “goto” constructs: structure
of high-level loop constructs may be destroyed
— Optimizing Java bytecodes (without high-level source
program): only low-level code is available

CS 412/413 Spring 2002 Introduction to Compilers

Control-Flow Analysis
e Goal: identify loops in the control flow graph

* Aloop in the CFG:
— Is a set of CFG nodes (basic blocks)
— Has a loop header such that
control to all nodes in the loop
always goes through the header
— Has a back edge from one of its
nodes to the header

CS 412/413 Spring 2002 Introduction to Compilers

Dominators

s Use concept of dominators to identify loops:
“CFG node d dominates CFG node n if all the paths from
entry node to n go through d”

1 dominates 2, 3, 4
[2] [3] 2 doesn’t dominate 4

[% 3 doesn’t dominate 4

o Intuition:
— Header of a loop dominates all nodes in loop body
— Back edges = edges whose heads dominate their tails
— Loop identification = back edge identification

CS 412/413 Spring 2002 Introduction to Compilers 6

Immediate Dominators

¢ Properties:
1. CFG entry node n, in dominates all CFG nodes
2. If d1 and d2 dominate n, then either
— d1 dominates d2, or
— d2 dominates d1

o Immediate dominator idom(n) of node n:
—idom(n) #n
— idom(n) dominates n
— If m dominates n, then m dominates idom(n)

o Immediate dominator idom(n) exists and is unique
because of properties 1 and 2

CS 412/413 Spring 2002 Introduction to Compilers 7

Dominator Tree

« Build a dominator tree as follows:
- Root is CFG entry node n,
— m is child of node n iff n=idom(m)

* Example:

CS 412/413 Spring 2002 Introduction to Compilers 8

Computing Dominators

¢ Formulate problem as a system of constraints:
— dom(n) is set of nodes who dominate n
— dom(ng)= {ng}
—dom(n) = N { dom(m) | m O pred(n) }

¢ Can also formulate problem in the dataflow
framework
— What is the dataflow information?
— What is the lattice?
— What are the transfer functions?
— Use dataflow analysis to compute dominators

CS 412/413 Spring 2002 Introduction to Compilers 9

Natural Loops

¢ Back edge: edge n - h such that h dominates n
¢ Natural loop of a back edge n- h:
- his loop header

— Loop nodes is set of all nodes that can reach n
without going through h

o Algorithm to identify natural loops in CFG:
— Compute dominator relation
— Identify back edges
— Compute the loop for each back edge

CS 412/413 Spring 2002 Introduction to Compilers 10

Disjoint and Nested Loops

o Property: for any two natural loops in the flow graph,
one of the following is true:

1. They are disjoint
2. They are nested
3. They have the same header

¢ Eliminate alternative 3: if two loops have the same
header and none is nested in the other, combine all
nodes into a single loop

1
'- Two loops: {1,2} and {1,3}
[3] Combine into one loop: {1,2,3}
CS 412/413 Spring 2002 Introduction to Compilers 11

Loop Preheader

» Several optimizations add code before header

¢ Insert a new basic block (called preheader) in
the CFG to hold this code

CS 412/413 Spring 2002 Introduction to Compilers 12

Loop optimizations

¢ Now we know the loops in the program

¢ Next: optimize loops
— Loop invariant code motion
— Strength reduction of induction variables
— Induction variable elimination

CS 412/413 Spring 2002 Introduction to Compilers 13

Loop Invariant Code Motion

o Idea: if a computation produces same result in all loop

iterations, move it out of the loop

o Example: for (i=0; i<10; i++)

afi] = 10%i + x*x;

o Expression x*x produces the same result in each

iteration; move it of the loop:

t = x*x;
for (i=0; i<10; i++)
a[i] = 10*i + t;

CS 412/413 Spring 2002 Introduction to Compilers 14

Loop Invariant Computation

¢ An instruction a = b OP c is loop-invariant if each
operand is:
— Constant, or
— Has all definitions outside the loop, or
— Has exactly one definition, and that is a loop-invariant
computation

» Reaching definitions analysis computes all the
definitions of x and y which may reacht = x OPy

CS 412/413 Spring 2002 Introduction to Compilers 15

Algorithm

INV =[]

Repeat
for each instruction i [J INV
if operands are constants, or
have definitions outside the loop, or
have exactly one definition d [J INV
then INV = INV U {i}
Until no changes in INV

CS 412/413 Spring 2002 Introduction to Compilers 16

Code Motion

¢ Next: move loop-invariant code out of the loop
¢ Suppose a = b OP c is loop-invariant
¢ We want to hoist it out of the loop

» Code motion of a definition d: a = b OP c in pre-header
is valid if:
1. Definition d dominates all loop exits where a is live
2. There is no other definition of a in loop
3. All uses of a in loop can only be reached from
definition d

CS 412/413 Spring 2002 Introduction to Compilers 17

Other Issues

* Preserve dependencies between loop-invariant instructions
when hoisting code out of the loop

for (i=0; i<N; i++) { X = y+z;

X = y+z; t = x*x;

afi] = 10*i + x*x; for(i=0; i<N; i++)
} afi] = 10%i + t;

« Nested loops: apply loop invariant code motion algorithm
multiple times
tl = x*x;
for (i=0; i<N; i++) for (i=0; i<N; i++) {
for (7=0; j<M; j++) t2 = t1+ 10%;
afil[i] = x*x + 10*i + 100%j; for (j=0; j<M; j++)
alil[j] = t2 + 100%j; }

CS 412/413 Spring 2002 Introduction to Compilers 18

