Program Loops

- **Loop**: a computation repeatedly executed until a terminating condition is reached.

- High-level loop constructs:
 - While loop: `while(E) S`
 - Do-while loop: `do S while(E)`
 - For loop: `for(i=1;i<=n;i++) C`

- Why are loops important:
 - Most of the execution time is spent in loops
 - Typically: 90/10 rule, 10% code is a loop

- Therefore, loops are important targets of optimizations

Detecting Loops

- Need to identify loops in the program:
 - Easy to detect loops in high-level constructs
 - Difficult to detect loops in low-level code or in general control-flow graphs

- Examples where loop detection is difficult:
 - Languages with unstructured "goto" constructs: structure of high-level loop constructs may be destroyed
 - Optimizing Java bytecodes (without high-level source program): only low-level code is available

Control-Flow Analysis

- **Goal**: identify loops in the control flow graph

- A loop in the CFG:
 - Is a set of CFG nodes (basic blocks)
 - Has a loop header such that control to all nodes in the loop always goes through the header
 - Has a back edge from one of its nodes to the header

Dominateds

- Use concept of dominators to identify loops:
 "CFG node d dominates CFG node n if all the paths from entry node to n go through d"

- Intuition:
 - Header of a loop dominates all nodes in loop body
 - Back edges = edges whose heads dominate their tails
 - Loop identification = back edge identification

Outline

- Control flow analysis
 - Detect loops in control flow graphs
 - Dominators

- Loop optimizations
 - Code motion
 - Strength reduction for induction variables
 - Induction variable elimination
Immediate Dominators

- Properties:
 1. CFG entry node n_0 dominates all CFG nodes
 2. If d_1 and d_2 dominate n, then either
 - d_1 dominates d_2 or d_2 dominates d_1
- Immediate dominator $\text{idom}(n)$ of node n:
 - $\text{idom}(n) = n$
 - $\text{idom}(n)$ dominates n
 - If m dominates n, then m dominates $\text{idom}(n)$
- Immediate dominator $\text{idom}(n)$ exists and is unique because of properties 1 and 2

Dominator Tree

- Build a dominator tree as follows:
 - Root is CFG entry node n_0
 - m is child of node n iff $n \text{idom}(m)$
- Example:

Computing Dominators

- Formulate problem as a system of constraints:
 - $\text{dom}(n)$ is set of nodes who dominate n
 - $\text{dom}(n_0) = \{n_0\}$
 - $\text{dom}(n) = \cap \{ \text{dom}(m) | m \in \text{pred}(n) \}$
- Can also formulate problem in the dataflow framework:
 - What is the dataflow information?
 - What is the lattice?
 - What are the transfer functions?
 - Use dataflow analysis to compute dominators

Natural Loops

- Back edge: edge $n \rightarrow h$ such that h dominates n
- Natural loop of a back edge $n \rightarrow h$:
 - h is loop header
 - Loop nodes is set of all nodes that can reach n without going through h
- Algorithm to identify natural loops in CFG:
 - Compute dominator relation
 - Identify back edges
 - Compute the loop for each back edge

Disjoint and Nested Loops

- Property: for any two natural loops in the flow graph, one of the following is true:
 1. They are disjoint
 2. They are nested
 3. They have the same header
- Eliminate alternative 3: if two loops have the same header and none is nested in the other, combine all nodes into a single loop

Loop Preheader

- Several optimizations add code before header
- Insert a new basic block (called preheader) in the CFG to hold this code
Loop optimizations

- Now we know the loops in the program
- Next: optimize loops
 - Loop invariant code motion
 - Strength reduction of induction variables
 - Induction variable elimination

Loop Invariant Code Motion

- Idea: if a computation produces same result in all loop iterations, move it out of the loop
- Example: for (i=0; i<10; i++)
 a[i] = 10*i + x*y;
- Expression x*y produces the same result in each iteration; move it of the loop:
 t = x*y;
 for (i=0; i<10; i++)
 a[i] = 10*i + t;

Loop Invariant Computation

- An instruction \(a = b \ OP \ c \) is loop-invariant if each operand is:
 - Constant, or
 - Has all definitions outside the loop, or
 - Has exactly one definition, and that is a loop-invariant computation

- Reaching definitions analysis computes all the definitions of \(x \) and \(y \) which may reach \(t = x \ OP \ y \)

Algorithm

\[INV = \emptyset \]
Repeat:
 for each instruction \(i \in INV \)
 if operands are constants, or
 have definitions outside the loop, or
 have exactly one definition \(d \in INV \)
 then \(INV = INV \cup \{d\} \)
Until no changes in \(INV \)

Code Motion

- Next: move loop-invariant code out of the loop
- Suppose \(a = b \ OP \ c \) is loop-invariant
- We want to hoist it out of the loop

- Code motion of a definition \(d: a = b \ OP \ c \) in pre-header is valid if:
 1. Definition \(d \) dominates all loop exits where \(a \) is live
 2. There is no other definition of \(a \) in loop
 3. All uses of \(a \) in loop can only be reached from definition \(d \)

Other Issues

- Preserve dependencies between loop-invariant instructions when hoisting code out of the loop:
 for (i=0; i<N; i++)
 \(x = y+z; \)
 \(t = x*y; \)
 \(a[i] = 10*i + x*y; \)
 for (i=0; i<N; i++)
 \(a[i] = 10*i + t; \)
- Nested loops: apply loop invariant code motion algorithm multiple times
 \(t1 = x*y; \)
 for (i=0; i<N; i++)
 \(t2 = t1 + 10*i; \)
 for (j=0; j<M; j++)
 \(a[j][i] = x*y + 10*i + 100*j; \)
 for (j=0; j<M; j++)
 \(a[j][i] = t2 + 100*j; \)