Problem 1: Live Variables

- Compute live variables at each program point
- Live variable = variable whose value may be used later, in some execution of the program
- Dataflow information: sets of live variables
- Example: variables \(x, y \) may be live at program point \(p \)
- \(L \) is a backward analysis
 - Let \(V \) = set of all variables in the program
 - lattice \((S, \subseteq) \), where:
 - \(S = 2^V \) (power set of \(V \), i.e. set of all subsets of \(V \))
 - Partial order \(\subseteq \) is set inclusion:
 \[
 S_1 \subseteq S_2 \iff S_1 \supseteq S_2
 \]

LV: The Lattice

- Consider set of variables \(V = \{ x, y, z \} \)
- Partial order: \(\subseteq \)
- \(V \) is finite implies
 - lattice has finite height
- Meet operator: \(\cup \) (set union: \(\text{out}(B) \) & union of \(\text{in}(B) \) for all \(B \in \text{succ}(B) \))
- Top element: \(\emptyset \)
- Smaller sets of live variables = more precise analysis
- All variables may be live = least precise

LV: Dataflow Equations

- General dataflow equations \((X_0 \text{ is information at the end of exit basic block}) \):
 - \(\text{in}(B) = F_B(\text{out}(B)) \), for all \(B \)
 - \(\text{out}(B) = \bigcap \{ \text{in}(B') | B' \in \text{succ}(B) \} \), for all \(B \)
 - \(\text{out}(B_0) = X_0 \)
- Replace meet with set union:
 - \(\text{in}(B) = F_B(\text{out}(B)) \), for all \(B \)
 - \(\text{out}(B) = \bigcup \{ \text{in}(B') | B' \in \text{succ}(B) \} \), for all \(B \)
 - \(\text{out}(B_0) = X_0 \)
- Meaning of union meet operator:
 - "A variable is live at the end of a basic block \(B \) if it is live at the beginning of one of its successor blocks"

LV: Transfer Functions

- Transfer functions for basic blocks are composition of transfer functions of instructions in the block
- Define transfer functions for instructions
- General form of transfer functions:
 - \(f_B(X) = (X - \text{def}(I)) \cup \text{use}(I) \)
 - where:
 \[
 \text{def}(I) = \text{set of variables defined (written) by } I
 \]
 \[
 \text{use}(I) = \text{set of variables used (read) by } I
 \]
- Meaning of transfer functions:
 - "Variables live before instruction \(I \): 1) variables live after \(I \), not written by \(I \), and 2) variables used by \(I \)"
LV: Transfer Functions

- Define def/use for each type of instruction
- If Is = y OP z:
 - use[I] = (y, z)
 - def[I] = (x)
- If Is = y:
 - use[I] = (y)
 - def[I] = (x)
- If Is = addr y:
 - use[I] = ()
 - def[I] = (x)
- If Is = f(y → y0):
 - use[I] = (y0 → y)
 - def[I] = (x)
- Transfer functions F_x = (X - def[I]) ∪ use[I]
- For each F_x, def[I] and use[I] are constants: they don't depend on input information X.

LV: Monotonicity

- Are transfer functions F_x = (X - def[I]) ∪ use[I] monotonic?
- Because def[I] is constant, X - def[I] is monotonic:
 - X1 ⊆ X2 implies X1 - def[I] ⊆ X2 - def[I]
- Because use[I] is constant, Y ∪ use[I] is monotonic:
 - Y1 ⊆ Y2 implies Y1 ∪ use[I] ⊆ Y2 ∪ use[I]
- Put pieces together: F_x = (X - def[I]) ∪ use[I]
 - are monotonic and distributive:
 - X1 ⊆ X2 implies
 (X1 - def[I]) ∪ use[I] ⊆ (X2 - def[I]) ∪ use[I]

LV: Distributivity

- Are transfer functions F_x = (X - def[I]) ∪ use[I] distributive?
- Since def[I] is constant, X - def[I] is distributive:
 - (X1 ∪ X2) - def[I] = (X1 - def[I]) ∪ (X2 - def[I])
 - because: (a ∪ b) - c = (a - c) ∪ (b - c)
- Since use[I] is constant, Y ∪ use[I] is distributive:
 - (Y1 ∪ Y2) ∪ use[I] = (Y1 ∪ use[I]) ∪ (Y2 ∪ use[I])
 - because: (a ∪ b) ∪ c = (a ∪ c) ∪ (b ∪ c)
- Put pieces together: F_x = (X - def[I]) ∪ use[I]
 - are monotonic and distributive:

Live Variables: Summary

- Lattice: (X', ⊆)
- has finite height
- Meet is union, top is empty set
- Is a backward dataflow analysis
- Dataflow equations:
 - F[B] = F[Out(B)], for all B
 - Out[B] = ∪ {h[B] | B ∈ sub(B)), for all B
 - Out[B0] = X0
- Transfer functions F_x = (X - def[I]) ∪ use[I]
 - are monotonic and distributive
- Iterative solving of dataflow equation:
 - terminates
 - computes MOP solution

Problem 2: Available Expressions

- Compute available expressions at each program point
- Available expression = expression evaluated in all program executions, and its value would be the same if re-evaluated
- Is similar to available copies discussed earlier
- Dataflow information: sets of available expressions
- Example: expressions (x+y, y-z) are available at point p
- Is a forward analysis
- Let E = set of all expressions in the program
- Lattice (E, ⊆), where:
 - L = 2^|E| (power set of E; i.e. set of all subsets of E)
 - Partial order ⊆ is set inclusion
 - S ⊆ S' if S ⊆ S'
- Top element: (e,f,g)
-Meet operator: ∩
 - set intersection
- Top element: (e,f,g)
 - (set of all expressions)
- Alternate sets of available variables = more precise analysis
- No available expressions = least precise

AE: The Lattice

- Consider set of expressions = {x+y, x+y, y-z}
- Denote e = x+y, f = x+y, g = y-z
- Partial order ⊆
- Top element: (e,f,g)
 - set of all expressions
- Alternate sets of available variables = more precise analysis
- No available expressions = least precise
AE: Dataflow Equations

- General forward dataflow equations (X_0 is information at beginning of entry basic block):
 \[\text{out}[I] = F_0(\text{in}[I]), \text{for all B} \]
 \[h[B] = \bigcap \{ \text{out}[E] \mid B \subseteq \text{pred}(E) \}, \text{for all B} \]
 \[h[B_0] = X_0 \]
- Replace meet with set intersection:
 \[\text{out}[I] = F_0(\text{in}[I]), \text{for all B} \]
 \[h[B] = \bigcap \{ \text{out}[E] \mid B \subseteq \text{pred}(E) \}, \text{for all B} \]
 \[h[B_0] = X_0 \]
- Meaning of intersection meet operator:
 "An expression is available at entry of block B if it is available at exit of all predecessor nodes"

AE: Transfer Functions

- Define kill and gen for each type of instruction
 \[\text{if} x = y \text{ op } z : \text{gen}[I] = \{ y \text{ op } z \} \]
 \[\text{kill}[I] = \{ E \mid x \in E \} \]
 \[\text{if} x = \text{op } y : \text{gen}[I] = \{ \text{op } y \} \]
 \[\text{kill}[I] = \{ E \mid x \in E \} \]
 \[\text{if} x = \text{addr } y : \text{gen}[I] = \{ y \} \]
 \[\text{kill}[I] = \{ E \mid x \in E \} \]
 \[\text{if} \text{if } (x) : \text{gen}[I] = \{ \} \]
 \[\text{kill}[I] = \{ \} \]
 \[\text{return } x : \text{gen}[I] = \{ x \} \]
 \[\text{kill}[I] = \{ \} \]
 \[\text{if } \text{if } \text{f}(y_1, \ldots, y_n) : \text{gen}[I] = \{ \} \]
 \[\text{kill}[I] = \{ E \mid x \in E \} \]
- Transfer functions $F_X = (X - \text{kill}[I]) \cup \text{gen}[I]$
- For each F, kill and gen are constants: they don't depend on input information X

AE: Monotonicity

- Are transfer functions $F_X = (X - \text{kill}[I]) \cup \text{gen}[I]$ monotonic?
- Because $\text{kill}[I]$ is constant, $X - \text{kill}[I]$ is monotonic:
 $X_1 \subseteq X_2$ implies $X_1 - \text{kill}[I] \subseteq X_2 - \text{kill}[I]$
- Because gen[I] is constant, $Y \cup \text{gen}[I]$ is monotonic:
 $Y_1 \subseteq Y_2$ implies $Y_1 \cup \text{gen}[I] \subseteq Y_2 \cup \text{gen}[I]$
- Put pieces together: F_X is monotonic
 $X_1 \subseteq X_2$ implies
 $(X_1 - \text{kill}[I]) \cup \text{gen}[I] \subseteq (X_2 - \text{kill}[I]) \cup \text{gen}[I]$

AE: Distributivity

- Are transfer functions $F_X = (X - \text{kill}[I]) \cup \text{gen}[I]$ distributive?
- Since $\text{kill}[I]$ is constant, $X - \text{kill}[I]$ is distributive:
 $X_1 \cap X_2 - \text{def}[I] = (X_1 - \text{def}[I]) \cap (X_2 - \text{def}[I])$ because: $(a \cap b) - c = (a - c) \cap (b - c)$
- Since gen[I] is constant, $Y \cup \text{gen}[I]$ is distributive:
 $(Y_1 \cap Y_2) \cup \text{gen}[I] = (Y_1 \cup \text{gen}[I]) \cap (Y_2 \cup \text{gen}[I])$ because: $(a \cap b) + c = (a + c) \cap (b + c)$
- Put pieces together: F_X is distributive
 $F_X(X_1 \cap X_2) = F_X(X_1) \cap F_X(X_2)$

Available Expressions: Summary

- Lattice: (S, \subseteq) has finite height
- Meet is set intersection, top element is E
- Is a forward dataflow analysis
- Dataflow equations:
 \[\text{out}[I] = F_0(\text{in}[I]), \text{for all B} \]
 \[h[B] = \bigcap \{ \text{out}[E] \mid B \subseteq \text{pred}(E) \}, \text{for all B} \]
 \[h[B_0] = X_0 \]
- Transfer functions $F_X = (X - \text{kill}[I]) \cup \text{gen}[I]$
 - Are monotonic and distributive
- Iterative solving of dataflow equation:
 - Terminates
 - Computes MOP solution

CS 4124/13 Spring 2002 Introduction to Compilers
Problem 3: Reaching Definitions
- Compute reaching definitions for each program point
- Reaching definition = definition of a variable whose assigned value may be observed at current program point in some execution of the program
- Dataflow information: sets of reaching definitions
- Example: definitions \((d2, d7)\) may reach program point \(p\)
- Is a forward analysis
- Let \(D\) = set of all definitions (assignments) in the program
- Lattice \((D, \leq)\), where:
 - \(L = 2^D\) (power set of \(D\))
 - Partial order \(\subseteq\) is set inclusion: \(A \subseteq B\)
 - \(S_1 \subseteq S_2 \iff S_1 \supseteq S_2\)

RD: The Lattice
- Consider set of expressions \(d\) = \(d_1, d_2, d_3\)
 - where \(d_1: x = y, d_2: x = x + 1, d_3: z = y - x\)
 - Partial order: \(\subseteq\)
 - Set \(D\) is finite implies lattice has finite height
 - Meet operator: \(\cap\) (set union)
 - Top element: \(\emptyset\) (empty set)
 - Smaller sets of reaching definitions = more precise analysis
 - All definitions may reach current point = least precise

RD: Dataflow Equations
- General forward dataflow equations \((X, i)\) is information at beginning of entry basic block:
 - \(\text{out}[i] = F_0(i[i]), \text{for all } B\)
 - \(h[B] = \bigcap \{\text{out}[B] | B \in \text{pred}(B)\}, \text{for all } B\)
 - \(h[B] = X_i\)
- Replace meet with set union:
 - \(\text{out}[i] = F_0(h[i]), \text{for all } B\)
 - \(h[B] = \bigcup \{\text{out}[B] | B \in \text{pred}(B)\}, \text{for all } B\)
 - \(h[B] = X_i\)
- Meaning of intersection meet operator:
 - “A definition reaches the entry of block \(B\) if it reaches the exit of at least one of its predecessor nodes”

RD: Transfer Functions
- Define transfer functions for instructions
 - General form of transfer functions:
 \(F_i(X) = (X - \text{killed}_i) \cup \text{generated}_i\)
 - \(\text{killed}_i = \text{definitions "killed" by } i\)
 - \(\text{generated}_i = \text{definitions "generated" by } i\)
- Meaning of transfer functions: “Reaching definitions after instruction \(i\) include: 1) reaching definitions before \(i\), not killed by \(i\), and 2) reaching definitions generated by \(i\)”

RD: Transfer Functions
- Define \(\text{killed}_i\) for each type of instruction
 - If \(i\) is a definition \(d\):
 \(\text{gen}_i = \{d\} \iff d\) defines \(x\)
 - If \(i\) is not a definition:
 \(\text{gen}_i = \{\}\)
- \(\text{killed}_i = \{\}\)
- Transfer functions \(F_i(X) = (X - \text{killed}_i) \cup \text{gen}_i\)
 - For each \(F_i\), \(\text{killed}_i\) and \(\text{gen}_i\) are constants: they don’t depend on input information \(X\)

RD: Monotonicity
- Transfer function: \(F_i(X) = (X - \text{killed}_i) \cup \text{gen}_i\)
 - \(F_i(X)\) is monotonic:
 \(X_1 \supseteq X_2\) implies \((X_1 - \text{killed}_i) \cup \text{gen}_i \supseteq (X_2 - \text{killed}_i) \cup \text{gen}_i\)
 - \(F_i(X)\) is distributive:
 \(F_i(X_1 \cup X_2) = F_i(X_1) \cup F_i(X_2)\)
 - Same reasoning as before
Reaching Definitions: Summary

- Lattice: \((2^\omega, \subseteq) \); has finite height
- Meet is set union, top element is \(\varnothing \)
- Is a forward dataflow analysis
- Dataflow equations:
 \[
 \text{out}([I]) = f_B ([I]), \text{for all } B \\
 h([B]) = \bigcup \{ \text{out}([B]) \mid B \in \text{pred}([B]) \}, \text{for all } B \\
 h([B]) = X_0
 \]
- Transfer functions \(f_B(X) = (X - \text{kill}[I]) \cup \text{gen}[I] \)
- Are monotonic and distributive
- Iterative solving of dataflow equation:
 - terminates
 - Computes MOP solution

Implementation

- Lattices in these analyses = power sets
- Information in these analyses = subsets of a set
- How to implement subsets?
 1. Set implementation
 - Data structure with as many elements as the subset has
 - Usually list implementation
 2. Bivectors:
 - Use a bit for each element in the overall set
 - Bit for element \(x \) is 1 if \(x \) is in subset, 0 otherwise
 - Example: \(S = \{a,b,c\} \); use 3 bits
 - Subset \(\{a,c\} \) is 101; subset \(\{b\} \) is 010, etc.

Implementation Tradeoffs

- Advantages of bivectors:
 - Efficient implementation of set union/intersection:
 - Set union is bitwise "or" of bivectors
 - Set intersection is bitwise "and" of bivectors
 - Drawbacks: inefficient for subsets with few elements
- Advantage of list implementation:
 - Efficient for sparse representation
 - Drawbacks: inefficient for set union or intersection
- In general, bivectors work well if the size of the (original) set is linear in the program size

Problem 4: Constant Folding

- Compute constant variables at each program point
- Constant variable \(= \) variable having a constant value on all program executions
- Dataflow information: sets of constant values
- Example: \(\{x=2, y=3\} \) at program point \(p \)
- Is a forward analysis
 - Let \(V = \text{set of all variables in the program, } \text{var} = \{V\} \)
 - Let \(N = \text{set of integer constants} \)
 - Use a lattice over the set \(V \times N \)
 - Construct the lattice starting from a lattice for \(N \)
 - Problem: \((N, \leq) \) is not a complete lattice
 - ... because there is no LUB(\(\varnothing \)) and GLB(\(N \))

Constant Folding Lattice

- Second try: lattice \((\mathbb{N}_U \{ \top, \bot \}, \leq) \)
 - \(\top \)
 - \(\bot \)
 - \(\leq \)
 - \(\text{Is complete?} \)
 - Meaning:
 - \(v = \top \): don't know \(f \) is constant
 - \(v = \bot \): \(v \) is not constant
- Another problem: has infinite height ...

Constant Folding Lattice

- Second try: lattice \((\mathbb{N}_U \{ \top, \bot \}, \leq) \)
 - \(\top \)
 - \(\bot \)
 - \(\leq \)
 - \(\text{Is complete?} \)
- Problem:
 - Is incorrect for constant folding
 - Meet of two constants \(c,d \) is \(\text{min}(c,d) \)
 - Meet of different constants should be \(\bot \)
- Another problem: has infinite height ...

CS 412413 Spring 2002 Introduction to Compilers
Constant Folding Lattice

- Solution: flat lattice $L = (N \cup \{T, \bot\}, \preceq)$
 - Where $\bot \preceq n$, for all $n \in N$
 - And $n \preceq T$, for all $n \in N$
 - And distinct integer constants are not comparable

Note: meet of any two distinct numbers is \bot!

CF: Transfer Functions

- Transfer function for instruction I:
 $f_I(x) = (X - \text{kill}[I]) \cup \text{gen}[I]$
 where:
 $\text{kill}[I] = \text{constants "killed" by I}$
 $\text{gen}[I] = \text{constants "generated" by I}$
 $X[v] = C \in N^*$ if $(v = C) \in X$
 If I is $\text{v} = C$ (constant):
 $\text{gen}[I] = \langle v = C \rangle$
 $\text{kill}[I] = \langle v \rangle \times N^*$

- If I is $v = u + w$:
 $\text{gen}[I] = \langle v = u \rangle$
 $\text{kill}[I] = \langle v \rangle \times N^*$

where $u = X[u] + X[w]$, if $X[u]$ and $X[w]$ are not T, \bot
 - $e = \bot$, if $X[u] = \bot$ or $X[w] = \bot$
 - $e = T$, if $X[u] = T$ and $X[w] = T$

CF: Distributivity

- Example:
 $\{x = 2, y = 3, z = T\} \vdash x = 2$
 $\{x = 3, y = 2, z = T\} \vdash x = 2, y = 3$

- At join point, apply meet operator:
 - Then use transfer function for $x = x + y$

CF: Distributivity

- Example:
 $\{x = 2, y = 3, z = T\} \vdash x = 2$
 $\{x = 3, y = 2, z = T\} \vdash x = 2, y = 3$

- Dataflow result (MFP) at the end:
 $\{x = \bot, y = \bot, z = \bot\}$

- MOP solution at the end:
 $\{x = \bot, y = \bot, z = 5\}$
CF: Distributivity

- Example:
 \[\begin{align*}
 x &= 2 \\
 y &= 3 \\
 z &= \{x=2,y=3,z=\top\} \\
 x &= 3 \\
 y &= 2 \\
 z &= \{x=3,y=2,z=\top\} \\
 x &= 3 \\
 y &= 2 \\
 z &= \{x=3,y=2,z=\bot\} \\
 x &= 2 \\
 y &= 3 \\
 z &= \{x=2,y=3,z=\bot\}
 \end{align*} \]

- Reason for MOP ≠ MFP: transfer function \(F \) of \(z=x+y \) is not distributive:

\[F(x_1 \cap x_2) \neq F(x_1) \cap F(x_2) \]

where \(x_1 = \{x=2,y=3,z=\top\} \) and \(x_2 = \{x=3,y=2,z=\top\} \)

Classification of Analyses

- Forward analyses: information flows from
 - CFG entry block to CFG exit block
 - Input of each block to its output
 - Output of each block to input of its successor blocks
 - Examples: available expressions, reaching definitions, constant folding

- Backward analyses: information flows from
 - CFG exit block to entry block
 - Output of each block to its input
 - Input of each block to output of its predecessor blocks
 - Example: live variable analysis

Another Classification

- "may" analyses:
 - Information describes a property that MAY hold in SOME executions of the program
 - Usually: \(\Gamma = \emptyset \)
 - Hence, initialize info to empty sets
 - Examples: live variable analysis, reaching definitions

- "must" analyses:
 - Information describes a property that MUST hold in ALL executions of the program
 - Usually: \(\Gamma = \emptyset \)
 - Hence, initialize info to the whole set
 - Examples: available expressions