Lecture 21: More About Dataflow Analysis

13 Mar 02

Transfer Functions

- Let \(L = \text{dataflow information lattice} \)
 - Transfer function \(F_i : L \to L \) for each instruction \(i \)
 - Describes how \(i \) modifies the information in the lattice
 - If \(\text{in}[i] \) is info before \(i \) and \(\text{out}[i] \) is info after \(i \), then
 Forward analysis: \(\text{out}[i] = F_i(\text{in}[i]) \)
 Backward analysis: \(\text{in}[i] = F_i^{-1}(\text{out}[i]) \)
 - Transfer function \(F_B : L \to L \) for each basic block \(B \)
 - Is composition of transfer functions of instructions in \(B \)
 - If \(\text{in}[B] \) is info before \(B \) and \(\text{out}[B] \) is info after \(B \), then
 Forward analysis: \(\text{out}[B] = F_B(\text{in}[B]) \)
 Backward analysis: \(\text{in}[B] = F_B^{-1}(\text{out}[B]) \)

Monotonicity and Distributivity

- Two important properties of transfer functions
 - Monotonicity: function \(F : L \to L \) is monotonic if \(x \leq y \) implies \(F(x) \leq F(y) \)
 - Distributivity: function \(F : L \to L \) is distributive if \(F(x \cap y) = F(x) \cap F(y) \)
 - Property: \(F \) is monotonic iff \(F(x \cap y) \leq F(x) \cap F(y) \)
 - any distributive function is monotonic

Proof of Property

- Prove that the following are equivalent:
 1. \(x \leq y \) implies \(F(x) \leq F(y) \), for all \(x, y \)
 2. \(F(x \cap y) \leq F(x) \cap F(y) \), for all \(x, y \)

Proof for "1 implies 2."
- Need to prove that \(F(x \cap y) \leq F(x) \cap F(y) \)
- Use property 2 to get \(F(x \cap y) \leq F(x) \cap F(y) \)
- Hence \(F(x \cap y) \leq F(x) \cap F(y) \)

Proof of "2 implies 1."
- Let \(x, y \) such that \(x \leq y \)
 - Then \(x \cap y = x \), so \(F(x \cap y) = F(x) \)
 - Use property 2 to get \(F(x \cap y) \leq F(x) \cap F(y) \)
 - Hence \(F(x \cap y) \leq F(x) \cap F(y) \)

Control Flow

- Meet operation models how to combine information at split/join points in the control flow
 - If \(\text{in}[B] \) is info before \(B \) and \(\text{out}[B] \) is info after \(B \), then:
 Forward analysis: \(\text{in}[B] = \bigcap \{ \text{out}[B] \mid B < \text{pred}(B) \} \)
 Backward analysis: \(\text{out}[B] = \bigcap \{ \text{in}[B] \mid B < \text{succ}(B) \} \)
 - Can alternatively use join operation \(\sqcup \) (equivalent to using the meet operation \(\sqcap \) in the reversed lattice)
Monotonicity of Meet

- Meet operation is also monotonic over $L \times L$:

 $$x_1 \sqsubseteq y_1 \text{ and } x_2 \sqsubseteq y_2 \Rightarrow (x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2)$$

- **Proof:**

 - Any lower bound of $\{x_1, x_2\}$ is also a lower bound of $\{y_1, y_2\}$, because $x_1 \sqsubseteq y_1$ and $x_2 \sqsubseteq y_2$.
 - $x_1 \sqcap x_2$ is a lower bound of $\{x_1, x_2\}$
 - So $x_1 \sqcap x_2$ is a lower bound of $\{y_1, y_2\}$
 - But $y_1 \sqcap y_2$ is the greatest lower bound of $\{y_1, y_2\}$
 - Hence $(x_1 \sqcap x_2) \sqsubseteq (y_1 \sqcap y_2)$

Forward Dataflow Analysis

- Control flow graph G with entry (start) node B_0
- Lattice (L, \sqsubseteq) represents information about program

 - Meet operation \sqcap, top element T
- Monotonic transfer functions

 - Transfer function $F_i : L \rightarrow L$ for each instruction i
 - Can derive transfer functions F_B for basic blocks
- Goal: compute the information at each program point, given the information at entry of B_i is X_0

Backward Dataflow Analysis

- Control flow graph G with exit node B_f
- Lattice (L, \sqsubseteq) represents information about program

 - Meet operator \sqcap, top element T
- Monotonic transfer functions

 - Transfer function $F_i : L \rightarrow L$ for each instruction i
 - Can derive transfer functions F_B for basic blocks
- Goal: compute the information at each program point, given the information at exit of B_i is X_0

Dataflow Equations

- The constraints are called dataflow equations:

 $$\text{out}(B) = F_B(\text{in}(B)), \text{ for all } B$$

 $$\text{in}(B) = \Gamma(\{\text{out}(B') | B' \sqsubseteq \text{pred}(B)\}), \text{ for all } B$$

 $$\text{in}[B_f] = X_0$$

- Solve equations: use an iterative algorithm

 - Initialize $\text{in}[B_f] = X_0$
 - Initialize everything else to T
 - Repeatedly apply rules
 - Stop when reach a fixed point

Algorithm

$$\text{in}[B_f] = X_0$$

$$\text{out}(B) = T, \text{ for all } B$$

Repeat

- For each basic block $B \neq B_f$

 $$\text{in}[B] = \Gamma(\{\text{out}(B') | B' \sqsubseteq \text{pred}(B)\})$$

 For each basic block B

 $$\text{out}[B] = F_B(\text{in}[B])$$

Until no change

Efficiency

- Algorithm is inefficient

 - Effects of basic blocks re-evaluated even if the input information has not changed
- Better: re-evaluate blocks only when necessary
- Use a worklist algorithm

 - Keep list of blocks to evaluate
 - Initialize list to the set of all basic blocks
 - If out[B] changes after evaluating out[B] = $F_B(\text{in}[B])$, then add all successors of B to the list
Worklist Algorithm

- \(\text{in}[B] = X_0 \)
- \(\text{out}[B] = \top \), for all \(B \)
- worklist = set of all basic blocks \(B \)

Repeat
- Remove a node \(B \) from the worklist
 - \(\text{in}[B] = \text{dom}(\text{out}[B]) \)
 - \(\text{out}[B] = \text{dom}(\text{in}[B]) \)
- If \(\text{out}[B] \) has changed, then
 - worklist = worklist \(\cup \) Succ(\(B \))

Until worklist = \(\emptyset \)

Correctness

- **Initial algorithm is correct**
 - If dataflow information does not change in the last iteration, then it satisfies the equations

- **Worklist algorithm is correct**
 - Maintains the invariant that
 - \(\text{in}[B] = \text{dom}(\text{out}[B]) \)
 - \(\text{out}[B] = \text{dom}(\text{in}[B]) \)
 - for all the blocks \(B \) not in the worklist
 - At the end, worklist is empty

Termination

- Do these algorithms terminate?
- **Key observation**: at each iteration, information decreases in the lattice
 - \(\text{in}_{\text{old}}[B] = \text{in}[B] \) and \(\text{out}_{\text{old}}[B] = \text{out}[B] \)
 - where \(\text{in}[B] \) is info before \(B \) at iteration \(k \) and \(\text{out}[B] \) is info after \(B \) at iteration \(k \)

Proof by induction:
- Induction basis: true, because we start with top element, which is greater than everything
- Induction step: use monotonicity of transfer functions and meet operation

- Information forms a chain: \(\text{in}_1[B] \supseteq \text{in}_2[B] \supseteq \text{in}_3[B] \ldots \)

Chains in Lattices

- A chain in a lattice \(L \) is a totally ordered subset \(S \) of \(L \):
 - \(x \sqsubseteq y \) or \(y \sqsubseteq x \) for any \(x, y \in S \)

- In other words:
 - Elements in a totally ordered subset \(S \) can be indexed to form an ascending sequence:
 - \(x_1 \sqsubseteq x_2 \sqsubseteq \ldots \)
 - or they can be indexed to form a descending sequence:
 - \(x_1 \supseteq x_2 \supseteq \ldots \)

- Height of a lattice = size of its largest chain

- Lattice with finite height: only has finite chains

Multiple Solutions

- The iterative algorithm computes a solution of the system of dataflow equations

- ... is the solution unique?

- No, dataflow equations may have multiple solutions!

- **Example**: live variables
 - Equations:
 - \(I_1 = I_2 = y = y \)
 - \(I_2 = I_1 \cup I_3 \)
 - \(I_4 = \{ y \} \)

- Solution 1: \(I_1 = \{ y \}, I_2 = \{ y \}, I_3 = \{ y \}, I_4 = \{ y \} \)

- Solution 2: \(I_1 = \{ y \}, I_2 = \{ x, y \}, I_3 = \{ y \}, I_4 = \{ \} \)
Safety

- Solution for live variable analysis:
 - Sets of live variables must include each variable whose values will further be used in some execution
 - ... may also include variables never used in any execution
- The analysis is safe if it takes into account all possible executions of the program
 - ... may also characterize cases which never occur in any execution of the program
- Say that the analysis is a conservative approximation of all executions
- In example:
 - Solution 2 includes x in live set S1, which is not used later
 - However, analysis is conservative

Maximal Fixed Point Solution

- Property: among all the solutions to the system of dataflow equations, the iterative solution is the most precise
- Intuition:
 - We start with the top element at each program point (i.e. most precise information)
 - Then refine the information at each iteration to satisfy the dataflow equations
 - Final result will be the closest to the top
- Iterative solution for dataflow equations is called Maximal Fixed Point solution (MFP)
- For any solution FP of the dataflow equations FP \subseteq MFP

Meet Over Paths Solution

- Is MFP the best solution to the analysis problem?
- Another approach: consider a lattice framework, but use a different way to compute the solution
 - Let G be the control flow graph with start block B_0
 - For each path \pi \in [B_0, B_1, ..., B_n] from entry to block B
 \in [B_i] = T_{\text{exit}} (\pi_i (\text{top}(B_0)))
 - Compute solution as
 \in [B_i] = \cap \{ \in [B_i] \} all paths \pi i from B_0 to B_n
- This solution is the Meet Over Paths solution (MOP)

MFP versus MOP

- Precision: can prove that MOP solution is always more precise than MFP
 \text{MFP} \subseteq \text{MOP}
- Why not use MOP?
 - MOP is intractable in practice
 1. Exponential number of paths: for a program consisting of a sequence of if statement, there will be 2^N paths in the control flow graph
 2. Infinite number of paths: for loops in the C/G

Importance of Distributivity

- Property: if transfer functions are distributive, then the solution to the dataflow equations is identical to the meet-over-paths solution
 \text{MFP} = \text{MOP}
- For distributive transfer functions, can compute the intractable MOP solution using the iterative fixed-point algorithm
Better Than MOP?

- Is MOP the best solution to the analysis problem?
- MOP computes solution for all path in the CFG
- There may be paths which will never occur in any execution
- So MOP is conservative
- IDEAL = solution which takes into account only paths which occur in some execution
- This is the best solution
- ... but it is undecidable

Summary

- Dataflow analysis
 - sets up system of equations
 - iteratively computes MFP
 - Terminates because transfer functions are monotonic and lattice has finite height
- Other possible solutions: FP, MOP, IDEAL
- All are safe solutions, but some are more precise:
 - FP ⊆ MFP ⊆ MOP ⊆ IDEAL
- MFP = MOP if distributive transfer functions
- MOP and IDEAL are intractable
- Compilers use dataflow analysis and MFP