CS412/413

Introduction to Compilers
Radu Rugina

Lecture 18: Control Flow Graphs
29 Feb 02

Optimizations

¢ Code transformations to improve program
— Mainly: improve execution time
— Also: reduce program size

e Can be done at high level or low level
— E.g. constant folding

» Optimizations must be safe

— Execution of transformed code must yield same
results as the original code for all possible executions

€S 412/413 Spring 2002 Introduction to Compllers 2

Optimization Safety

» Safety of code transformations usually requires certain
information which may not explicit in the code

* Example: dead code elimination

@D x=y+1
2 y=2*gz
3) x=y+z
@ z=x
5 z=1;

» What statements are dead and can be removed?

€S 412/413 Spring 2002 Introduction to Compilers

Optimization Safety

« Safety of code transformations usually requires certain
information which may not explicit in the code

o Example: dead code elimination

1)

2 y=2*gz
3) x=y+z
4)

(5) z=1;

* Need to know what values assigned to x at (1) is never
used later (i.e. x is dead at statement (1))
— Obvious for this simple example (with no control flow)
— Not obvious for complex flow of control

CS 412/413 Spring 2002 Introduction to Compilers 4

Dead Code Example

e Add control flow to example:

x=y+1;
y=2%*z

if (d) x =y+z;
z=1;

z=X;

e Is 'x = y+1' dead code? Is 'z = x’ dead code?

CS 412/413 Spring 2002 Introduction to Compilers

Dead Code Example

» Add control flow to example:

xX=y+1;

y=2%*gz

if (d) x =y+z;
»Z=X;

» Statement x = y+1 is not dead code!
e On some executions, value is used later

CS 412/413 Spring 2002 Introduction to Compilers 6

Dead Code Example

* Add more control flow:

while (c) {
X=y+1;
y=2%z
if (d) x =y+z;
z=1;

}

z=X;

o Is'x = y+1' dead code? Is 'z = x’ dead code?

€S 412/413 Spring 2002 Introduction to Compllers 7

Dead Code Example

¢ Add more control flow:

while (c) {
X=y+1;

y=2*z
if (d) x@
z=1;

4

z=X;

¢ Statement ‘x = y+1’ not dead (as before)
o Statement ‘z = 1’ not dead either!
* On some executions, value from ‘z=1"is used later

CS 412/413 Spring 2002 Introduction to Compilers 8

Low-level Code

¢ Much harder to eliminate dead code in low-level code:
label L1
fjump c L2
X=y+1;

y=2%gz \
fjumpd L3 Are these

X = y+z; statements
IabeIL3‘//////’/// dead?
z=1,;

jump L1

label L2

z=X;

CS 412/413 Spring 2002 Introduction to Compilers 9

Low-level Code

¢ Much harder to eliminate dead code in low-level code:
label L1
fjump c L2
X=y+1;
y=2%z
fjumpd L3 It is harder to analyze
X = y+z; flow of control
label L3 in low level code
z=1,;
jump L1
label L2
zZ=YX;

CS 412/413 Spring 2002 Introduction to Compilers 10

Optimizations and Control Flow

» Application of optimizations requires information

— Dead code elimination: need to know if variables are
dead when assigned values

e Required information:
— Not explicit in the program
— Must compute it statically (at compile-time)
— Must characterize all dynamic (run-time) executions

¢ Control flow makes it hard to extract information
— Branches and loops in the program
— Different executions = different branches taken,
different number of loop iterations executed

CS 412/413 Spring 2002 Introduction to Compilers 11

Control Flow Graphs

e Control Flow Graph (CFG) = graph representation
of computation and control flow in the program
— framework to statically analyze program control-flow

* Nodes are basic blocks = sequences of
consecutive non-branching statements

» Edges represent possible flow of control from the
end of one block to the beginning of the other

— There may be multiple incoming/outgoing edges for
each block

CS 412/413 Spring 2002 Introduction to Compilers 12

CFG Example

Program

xX=z-2;
y=2%
if () {
X = x+1;
; y=y+1;
else { B,
x = x-1;
y=y1,
}

Z = Xx+y;

€S 412/413 Spring 2002

Control Flow Graph

B,

X =2-2;
y =2z
if (c)
I~ I
X = X+1; x=x-1;| B3
y=y+1, y=y1,

\
Nrerem)

Introduction to Compllers

Basic Blocks

» Basic block = sequence of consecutive
statements such that:
— Control enters only at beginning of sequence
— Control leaves only at end of sequence
incoming control

NS
a=a+l;
b = c*a;
d=cb;
1\

outgoing control

¢ No branching in or out in the middle of basic blocks

€S 412/413 Spring 2002

Introduction to Compllers 14

Computation and Control Flow

e Basic Blocks =
Nodes in the graph =

computation in the
program

Control Flow Graph

B,
e Edges in the graph =

Bix = z-2;
y =2z
if (c)
I d
X = x+1; X = X-1;
y=y+l; y=y-1

B;

control flow in the
program

€S 412/413 Spring 2002

\
5.1

Introduction to Compilers

Multiple Program Executions

e CFG models all
program executions

Control Flow Graph

B,

X =2-2;
¢ Possible execution= y = 2%z
path in the graph if (c)
T E
e Multiple paths = / \
multiple possible Ba[x = x+1; x=x1;|B;
program executions y =y+1; y=y-1;
2
CS 412/413 Spring 2002 Introduction to Compilers 16

Execution 1

e CFG models all
program executions

¢ Possible execution=
path in the graph

Control Flow Graph

Bilx = z-2;
y =2z
if (c)

-

e Execution 1:
— Cis true
— Program executes

B, |x = x+1;
y = y+];

basic blocks B,
BZI B4

CS 412/413 Spring 2002

.=

Introduction to Compilers

Execution 2

e CFG models all
program executions

Control Flow Graph

Bilx = z-2;
¢ Possible execution= y = 2%z
path in the graph if (c)
\Ii
e Execution 2:
- Cis false x=x1;| B
— Program executes y=y1L

basic blocks B, /

CS 412/413 Spring 2002

Introduction to Compilers 18

Edges Going Out

o Multiple outgoing edges
» Basic block executed next may be one of the
successor basic blocks

¢ Each outgoing edge = outgoing flow of control
in some execution of the program

Basic
Block
PR
outgoing edges

CS 412/413 Spring 2002 Introduction to Compilers 19

Edges Coming In

e Multiple incoming edges
« Control may come from any of the successor
basic blocks

¢ Each incoming edge = incoming flow of control
in some execution of the program

incoming edges
NS

Basic

Block

CS 412/413 Spring 2002 Introduction to Compilers 20

Building the CFG

o Currently the compiler represents the program
using either High IR or low IR

» Can construct CFG for either of the two
intermediate representations

e Build CFG for High IR
— Construct CFG for each High IR node

e Build CFG for Low IR
— Analyze jump and label statements

CS 412/413 Spring 2002 Introduction to Compilers 21

CFG for High-level IR

o CFG(S)= flow graph of high level statement S
¢ CFG (S) is single-entry, single-exit graph:

— one entry node (basic block)

— one exit node (basic block)

-

* Recursively define CFG(S)

€S 412/413 Spring 2002 Introduction to Compllers 2

CFG for Block Statement

o CFG(S1;52; ..;SN) =

CS 412/413 Spring 2002 Introduction to Compilers 23

CFG for If-then-else Statement

o CFG (if (E)SlelseS2)

[crG(sy) | [cFG(s2) |

T— Emply

basic block

CS 412/413 Spring 2002 Introduction to Compilers 24

CFG for If-then Statement

« CFG(if(E)S)

€S 412/413 Spring 2002 Introduction to Compllers

25

CFG for While Statement

e CFG for: while (e) S

CS 412/413 Spring 2002 Introduction to Compilers 26

Recursive CFG Construction

o Nested statements: recursively construct CFG
while traversing IR nodes

e Example:
while (c) {
x=y+1;
y=2%*z
if (d) x =y+z
z=1;

=P

€S 412/413 Spring 2002 Introduction to Compilers

Recursive CFG Construction

o Nested statements: recursively construct CFG
while traversing IR nodes

while (c) {
x=y+1; CFG(while)
y=2*z
if (d) x =y+z
z=1;
¥
z=X;

CS 412/413 Spring 2002 Introduction to Compilers 28

Recursive CFG Construction

» Nested statements: recursively construct CFG
while traversing IR nodes

while (c) {
XxX=y+1;
y=2%*z
if (d) x =y+z
z=1;

2=

CS 412/413 Spring 2002 Introduction to Compilers

Recursive CFG Construction

» Nested statements: recursively construct CFG
while traversing IR nodes

while (c) {
X=y+1;
y=2*z
if (d) x =y+z
z=1;

z=x;

CS 412/413 Spring 2002 Introduction to Compilers 30

Recursive CFG Construction

¢ Simple algorithm to build CFG

¢ Generated CFG
— Each basic block has a single statement
— There are empty basic blocks

» Small basic blocks = inefficient
— Small blocks = many nodes in CFG
— Compiler uses CFG to perform optimization

— Many nodes in CFG = compiler optimizations will be
time- and space-consuming

€S 412/413 Spring 2002 Introduction to Compllers 31

Efficient CFG Construction

e Basic blocks in CFG:
— As few as possible
— As large as possible

* There should be no pair of basic blocks (B1,B2)
such that:
— B2 is a successor of B1
— B1 has one outgoing edge
— B2 has one incoming edge

* There should be no empty basic blocks

CS 412/413 Spring 2002 Introduction to Compilers 32

Example
o Efficient CFG:

while (c) {
XxX=y+1;
y=2*z
if (d) x =y+z
z=1;
z=Yx;
CS412/413 Spring 2002 Introduction to Compilers 33

CFG for Low-level IR

» Identify basic blocks as sequences of:

— Non-branching instructions I?bel L
— Non-label instructions fjump c L2
X=y+1;
« No branches (jump) instructions = y= 2%z
control doesn't flow out of basic fijumpd L3
blocks X = y+z;
label L3
« No labels instructions = control z=1
doesn't flow into blocks jump L1
label L2
z=X;
CS 412/413 Spring 2002 Introduction to Compilers 34

CFG for Low-level IR

. label L1
» Basic block start: fiump c L2

- At label instructions x=y+1;

— After jump instructions y=2%*z
fjumpd L3

« Basic blocks end: X = 4z,
. .) label L3

— At jump instructions —_—"

— Before label instructions jump’Ll
label L2
zZ=X;

CS 412/413 Spring 2002 Introduction to Compilers 35

CFG for Low-level IR

abel L1
fjlump c L2

« Conditional jump:

v
2 SUCCeSSors x=y+1
y=2*z
fijump d L3
» Unconditional jump: v

1 successor
label L3
z=1;

jump L1

CS 412/413 Spring 2002 Introduction to Compilers 36

CFG for Low-level IR

XxX=y+1;

y=2*z

fjlumpd L3
v

label L3
z=1;
jump L1

€S 412/413 Spring 2002 Introduction to Compllers ¥

