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Semantic Analysis

* Check errors not detected by lexical or syntax
analysis

e Scope errors:
— Variables not defined
— Multiple declarations

e Type errors:
— Assignment of values of different types
— Invocation of functions with different number of
parameters or parameters of incorrect type
— Incorrect use of return statements
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Semantic Analysis

* Type checking
— Use type checking rules

— Static semantics = formal framework to specify type-
checking rules

* There are also control flow errors:

— Must verify that a break or continue statement is
always enclosed by a while (or for) statement

— Java: must verify that a break X statement is
enclosed by a for loop with label X

— Can easily check control-flow errors by recursively
traversing the AST
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Where We Are

Abstract syntax tree
+ symbol tables, types

Intermediate Code
I:> Generation

L> Intermediate Code
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Intermediate Code

¢ IR = Intermediate Representation

¢ Allows language-independent, machine-
independent optimizations and transformations

optimize Pentium
| |
J
AST —\e IR Java bytecode
Alpha
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What Makes a Good IR?

o Easy to translate from AST

o Easy to translate to assembly

* Narrow interface: small number of node types
(instructions)

— Easy to optimize AST (>40 node types)
— Easy to retarget
IR (13 node types)
|

Pentium (>200 opcodes)
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Multiple IRs

* Some optimizations require high-level structure
e Others more appropriate on low-level code

optimize Pentium
|
AST —\& IR Java bytecode
Alpha
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Multiple IRs

* Some optimizations require high-level structure
o Others more appropriate on low-level code
e Solution: use multiple IR stages

- - Pentium
optimize optimize
N
) O)
AST — HIR — LIR Java bytecode
Alpha
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Machine Optimizations

o ... some other optimizations take advantage of
the features of the target machine

» Machine-specific optimizations

Next Lectures

* Next few lectures: intermediate representation
o Optimizations covered later

~—\optimize
)
- - Pentium
optimize optimize o
/*\\ /) _—. optimize
$“ ) v ) )
AST — HIR — LIR Java bytecode
—0ptimize
L)
Alpha
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Multiple IRs
e Usually two IRs:

High-level IR Low-level IR
Language-independent Machine independent
(but closer to language) (but closer to machine)

C Pentium

Fortran 3 HIR —— LIR Java bytecode
Pascal Alpha
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Pentium
AST —HIR — LIR Java bytecode
Alpha
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Multiple IRs

e Another benefit: a significant part of the
translation from high-level to low-level is
— Language-independent
— Machine-independent
C Pentium

Fortran #HIR — LIR Java bytecode
Pascal Alpha
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High-Level IR

* High-level intermediate representation is
essentially the AST

— Must be expressive for all input languages

* Preserves high-level language constructs

— Structured control flow: if, while, for, switch, etc.

— variables, methods

o Allows high-level optimizations based on
properties of source language (e.g. inlining)
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Low-Level IR

o Low-level representation is essentially an
abstract machine

* Has low-level constructs
— Unstructured jumps, registers, memory locations

* Allows optimizations specific to these constructs
(e.g. register allocation, branch prediction)
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Low-Level IR

o Alternatives for low-level IR:
— Three-address code or quadruples:
a=bOPc

— Tree representation (Tiger Book)

— Stack machine (like Java bytecode)

* Advantages:
— Three-address code: easier dataflow analysis
— Tree IR: easier instruction selection
— Stack machine: easier to generate
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Three-Address Code

In this class: three-address code
a=bO0OPc

Also named quadruples because can be
represented as: (a, b, ¢, OP)

* Has at most three addresses (may have fewer)

e Example:
a = (b+c)*(-e); til=b+c
R2=-e
a=tl*t2
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IR Instructions

e Assignment instructions:
—a=DbOPc: binary operation
« arithmetic: ADD, SUB, MUL, DIV, MOD
 logic: AND, OR, XOR
« comparisons: EQ, NEQ, LT, GT, LEQ, GEQ
—a = OP b : unary operation
* Arithmetic MINUS or logic NEG
—a = b : copy instruction
—a = load b : load instruction
— a = [b] : store instruction
— [a] = b : symbolic address
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IR Instructions (Ctd)

* Flow of control instructions:
— label L : label instruction
— jump L : Unconditional jump
— cjump a L : conditional jump

e Function call
- call f(ay, -..., a,)
—-a=callf(ay ..., a,)
— Is an extension to quads

e ... IR describes the Instruction Set of an
abstract machine
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Temporary Variables

* The operands in the quadruples can be;
— Program variables
— Integer constants
— Temporary variables

e Temporary variables = new locations
— Use temporary variables to store intermediate values

CS 412/413 Spring 2002 Introduction to Compilers 19

Arithmetic / Logic Instructions

* Abstract machine supports a variety of different
operations

a=bOPc a=0Pb
» Arithmetic operations: ADD, SUB, DIV, MUL
e Logic operations: AND, OR, XOR

» Comparisons: EQ, NEQ, LE, LEQ, GE, GEQ
¢ Unary operations: MINUS, NEG
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Data Movement

¢ Copy instruction
a=b
¢ Models a load/store abstract machine
a = [b] [a]=b
* Take symbolic addresses of variables:

a=addrb
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Branch Instructions

¢ Unconditional jump: go to statement after label L
jump L
¢ Conditional jump:

— Test condition variable a
— If value is true, jump to label L

Call Instruction
* Supports function call statements
call f(ay, ..., a,)
o ... and function call assignments:
a = call f(ay, ..., a,)

* No explicit representation of argument passing,
stack frame setup, etc.
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cjump alL
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Example
n=20
label test
n=0; t2=n<10
while (n < 10) { t3 = not t2
n=n+1 cjump t3 end
} label body
n=n+1
jump test
label end
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Another Example

m=0
tl=c==
irp(z 0=’= 0){ cjump t1 trueb
m=m+ n*n, m = m+n
} else { jump end
m=m+n; label trueb
} t2=n*n
m=m + t2
label end
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How To Translate?

* May have nested language constructs
— Nested if and while statements

» Need an algorithmic way to translate

e Solution:
— Start from the AST representation
— Define translation for each node in the AST
— Recursively translate nodes in the AST
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