CS412/413

Introduction to Compilers
Radu Rugina

Lecture 11; Symbol Tables
13 Feb 02

Where We Are

i~
Abstract syntax ¥ N ¥ N e
tree (AST) b0 a b
Semantic Analysis
CS 412/413 Spring 2002 Introduction to Compilers 2

Incorrect Programs

o Lexically and syntactically correct programs may still
contain other errors!

» Lexical and syntax analysis are not powerful enough
to ensure the correct usage of variables, objects,
functions, statements, etc.

» Example: lexical analysis does not distinguish
between different variable or function identifiers
(it returns the same token for all identifiers)

int a; int a;
a=1; b=1;
CS 412/413 Spring 2002 Introduction to Compilers 3

Incorrect Programs

e Example 2: syntax analysis does not correlate the
declarations with the uses of variables in the
program:

int a;
a=1; a=1;

e Example 3: syntax analysis does not correlate the
types from the declarations with the uses of variables:

int a; int a;
a=1; a=1.0;
CS 412/413 Spring 2002 Introduction to Compilers 4

Goals of Semantic Analysis

= Semantic analysis = ensure that the program satisfies a set
of rules regarding the usage of programming constructs
(variables, objects, expressions, statements)

* Examples of semantic rules:
— Variables must be defined before being used
— A variable should not be defined multiple times
— In an assignment statement, the variable and the
assigned expression must have the same type
— The test expr. of an if statement must have boolean type

* Two main categories:
— Semantic rules regarding types
— Semantic rules regarding scopes

CS 412/413 Spring 2002 Introduction to Compilers 5

Type Information

¢ Type information = describes what kind of values
correspond to different constructs: variables,
statements, expressions, functions

variables: int a; integer
expressions: (a+1) == boolean
statements: a = 1.0 floating-point
functions: int pow(int n, int m) intxint - int

CS 412/413 Spring 2002 Introduction to Compilers 6

Type Checking

¢ Type checking = set of rules which ensures the type
consistency of different constructs in the program

e Examples:

— The type of a variable must match the type from its
declaration

— The operands of arithmetic expressions (+, *, -, /) must
have integer types; the result has integer type

— The operands of comparison expressions (==, !=) must
have integer or string types; the result has boolean type

CS 412/413 Spring 2002 Introduction to Compilers 7

Type Checking

¢ More examples:

- For each assignment statement, the type of the updated
variable must match the type of the expression being
assigned

- For each call statement foo(v,, ..., v,,), the type of each
actual argument v; must match the type of the
corresponding formal argument f; from the declaration of
function foo

— The type of the return value must match the return type
from the declaration of the function

e Type checking: next two lectures.

CS 412/413 Spring 2002 Introduction to Compilers 8

Scope Information

» Scope information = characterizes the declaration of identifiers
and the portions of the program where it is allowed to use
each identifier

- Example identifiers: variables, functions, objects, labels
o Lexical scope = textual region in the program

— Statement block

— Formal argument list

— Object body

— Function or method body

— Module body

— Whole program (multiple modules)

= Scope of an identifier: the lexical scope its declaration refers to

CS 412/413 Spring 2002 Introduction to Compilers 9

Scope Information

* Scope of variables in statement blocks:

{inta;,” "~~~
<+«— scope of variable a
§ int b; } scope of variable b

Yy

¢ Scope of global variables: current module
¢ Scope of external variables: whole program

CS 412/413 Spring 2002 Introduction to Compilers

Scope Information

e Scope of formal arguments of functions:

int factorial(int n) {

}ﬁ scope of argument n
}

e Scope of labels:
void f() {

..gotol; ...
I:a=1; < scope of label |
..gotol; ...

}

CS412/413 Spring 2002 Introduction to Compilers

Scope Information

* Scope of object fields and methods:

class A {
private int x; .
public void g() { x=1; } <« scope of field x

}
class B extends A {

public int hQ) { g0; } scope of method f

CS 412/413 Spring 2002 Introduction to Compilers 12

Semantic Rules for Scopes

* Main rules regarding scopes:
Rule 1: Use each identifier only within its scope

Rule 2: Do not declare identifiers of the same kind with
identical names more than once in the same lexical scope

¢ Can declare identifiers with the same name with identical
or overlapping lexical scopes if they are of different kinds

class X { int X(int X) {
int X; int X;
void X(int X) { goto X; Not '
X: for(;;) {intX; Recommended!
break X; X:X=1;}
} }
}
CS 412/413 Spring 2002 Introduction to Compilers 13

Symbol Tables

¢ Semantic checks refer to properties of identifiers in the
program -- their scope or type

* Need an environment to store the information about
identifiers = symbol table

¢ Each entry in the symbol table contains
— the name of an identifier
— additional information: its kind, its type, if it is constant, ...

Scope Information

* How to capture the scope information in the
symbol table?

o Idea:
» There is a hierarchy of scopes in the program
o Use a similar hierarchy of symbol tables
* One symbol table for each scope

* Each symbol table contains the symbols
declared in that lexical scope

CS 412/413 Spring 2002 Introduction to Compilers 15

Identifiers With Same Name

« The hierarchical structure of symbol tables
automatically solves the problem of resolving
name collisions (identifiers with the same name
and overlapping scopes)

¢ To find which is the declaration of an identifier
that is active at a program point :

» Start from the current scope

* Go up in the hierarchy until you find an
identifier with the same name

CS 412/413 Spring 2002 Introduction to Compilers 17

NAME KIND TYPE ATTRIBUTES
foo func int x int ~ bool extern
m arg int
n arg int const
tmp var bool const
CS 412/413 Spring 2002 Introduction to Compilers 14
Example
int x; Global syrrlltab
x | var int
void f(int m) { ! {func nt - void
. unc | int - i
float x, y; funct:b g/ func g|J
sym symtal
{inti, 3 ..; m [arg | int [var [int |
{intx; I:..; } x | var :oat [t [var |bool]
y | var oat
Intt?c(’lcl)';ttp){ [P [var[int] [x [var [int]
ol [[var [lint | [T |Tab | |
e
}
CS 412/413 Spring 2002 Introduction to Compilers 16
Example
int x; Global smmb
X | var int
void f(int m) { f ffznc int — void
float x,v; I
{!nti,j;X=1;} m [arg | int n | var | int
) {intx; x=2;} x | var goat |t [var [bool]
) y/ var oa\t\ x=3
int glint) ¢ [T var [t] [x [var [int |
1 [[varint] [T [1lab| |
X =3;
3} x=1 x=2
CS 412/413 Spring 2002 Introduction to Compilers 18

Catching Semantic Errors

int x: —— FError!
! X | var int
void (it m) ¢ Cnclet vt
float x, y; /gv N
{ inti, j;x=1; } m |arg | int [n [var [int |
{intx; l:i=2;} x | var | float [t | var |bool |
} y | var | float x=3
int glint) ¢ [T Tvar [int] [x [var [int |
1 [[varJint | [T 10| |
X=3;
3} x=1
CS 412/413 Spring 2002 Introduction to Compilers 19

Symbol Table Operations

e Two operations:
* To build symbol tables, we need to insert new
identifiers in the table
» In the subsequent stages of the compiler we
need to access the information from the table:
use a lookup function

e Cannot build symbol tables during lexical analysis
» hierarchy of scopes encoded in the syntax

« Build the symbol tables:
» while parsing, using the semantic actions
» After the AST is constructed

CS 412/413 Spring 2002 Introduction to Compilers 20

List Implementation

o Simple implementation = list
* One cell per entry in the table
o Can grow dynamically during compilation

—> L]
foo m n tmp
func var var Var
int x int int int bool
- bool

» Disadvantage: inefficient for large symbol tables
» need to scan half the list on average

CS 412/413 Spring 2002 Introduction to Compilers 21

Hash Table Implementation

o Efficient implementation = hash table
* Itis an array of lists (buckets)

* Uses a hashing function to map the symbol name to the
corresponding bucket: hashfunc : string - int

» Good hash function = even distribution in the buckets

—{ e —s[m|varfint[+—tmp|var|bool| e |

«———[n arjnt] « |

——|foofunc]... [¢]

o hashfunc("m”) = 0, hashfunc(“foo”) = 3

CS 412/413 Spring 2002 Introduction to Compilers 22

Forward References

* Forward references = use an identifier within the scope of
its declaration, but before it is declared

« Any compiler phase that uses the information from the
symbol table must be performed after the table is
constructed

* Cannot type-check and build symbol table at the same time
* Example:

class A {
int m() { return n(); }
int n() { return 1; }

}

CS 412/413 Spring 2002 Introduction to Compilers 23

Summary

Semantic checks ensure the correct usage of variables,
objects, expressions, statements, functions, and labels in
the program

= Scope semantic checks ensure that identifiers are correctly
used within the scope of their declaration

* Type semantic checks ensures the type consistency of
various constructs in the program

Symbol tables: a data structure for storing information
about symbols in the program
« Used in semantic analysis and subsequent compiler stages

o Next time: type-checking

CS 412/413 Spring 2002 Introduction to Compilers 24

