Introduction to Compilers
Radu Rugina

Lecture 5: Context-Free Grammars
30 Jan 02

Outline
- JLex clarification
- Context-Free Grammars (CFGs)
- Derivations
- Parse trees and abstract syntax
- Ambiguous grammars

JLex: Clarification
- JLex tries to find the longest matching sequence
- Problem: what if the lexer goes past a final state of a shorter token, but then doesn't find any other longer matching token later?
- Consider R = 00 | 10 | 0011 and input w = 0010

We reach state 3 with no transition on input 0!
- Solution: record the last accepting state

Lexical Analysis
- Translates the program (represented as a stream of characters) into a sequence of tokens
- Uses regular expressions to specify tokens
- Uses finite automata for the translation mechanism
- Lexical analyzers are also referred to as lexers or scanners

Where We Are

Syntax Analysis Example

Abstract Syntax Tree (AST)
Parsing Analogy

- Syntax analysis for natural languages: recognize whether a sentence is grammatically well-formed & identify the function of each component.

```
  sentence
    subject: I verb: gave indirect object: him
    noun phrase: the, noun, book
```

Syntax Analysis Overview

- **Goal**: determine if the input token stream satisfies the syntax of the program
- **What we need for syntax analysis**:
 - An expressive way to describe the syntax
 - An acceptor mechanism that determines if the input token stream satisfies that syntax description
- **For lexical analysis**:
 - Regular expressions describe tokens
 - Finite automata = acceptors for regular expressions

Why Not Regular Expressions?

- Regular expressions can expressively describe tokens
 - Easy to implement, efficient (using DFAs)
- Why not use regular expressions (on tokens) to specify programming language syntax?
- Reason: they don't have enough power to express the syntax in programming languages
- Example: nested constructs (blocks, expressions, statements)
 - Language of balanced parentheses
 `{(} ` `)` ` `(())`) ` ` ` `...
 `We need unbounded counting!`

Context-Free Grammars

- Use Context-Free Grammars (CFG):
 - Terminal symbols = token or ε
 - Non-terminal symbols = syntactic variables
 - Start symbol S = special nonterminal
 - Productions of the form LHS → RHS
 - LHS = a single nonterminal
 - RHS = a string of terminals and non-terminals
 - Specify how non-terminals may be expanded
- **Language** generated by a grammar = the set of strings of terminals derived from the start symbol by repeatedly applying the productions
- L(G) denotes the language generated by grammar G

Example

- Grammar for balanced-parenthesis language:
 - S → (S)S
 - S → ε
 - 1 nonterminal: S
 - 2 terminals "(" and ")"
 - Start symbol: S
 - 2 productions:
 - If a grammar accepts a string, there is a derivation of that string using the productions:
 S = (S) ε = ((S) S) ε = (ε) ε = ε = {Q}

Context-Free Grammars

- **Shorthand notation**: vertical bar for multiple productions
 - S → a Sa | T
 - T → b T b | ε
- **Context-free grammars** = powerful enough to express the syntax in programming languages
- **Derivation** = successive application of productions starting from S (the start symbol)
- The acceptor mechanism = determine if there is a derivation for an input token stream
Grammars and Acceptors

- Acceptors for context-free grammars

 Context-free Grammar

 $\text{G} \rightarrow \text{Accepter}$

 Token Stream

 $s \rightarrow \{ \text{Yes, if } s \in L(G) \}$

 $\{ \text{No, if } s \notin L(G) \}$

- Syntax analyzers (parsers) = CFG acceptors which also output the corresponding derivation when the token stream is accepted

 Various kinds: LL(k), LR(k), SLR, LALR

RE is Subset of CFG

- Inductively build a grammar for each regular expression

 $\varepsilon \rightarrow \varepsilon$

 $a \rightarrow a$

 $R_1 \rightarrow S_1, S_2$

 $R_1 \rightarrow S_1 | S_2$

 $R_1 \rightarrow S_1 | \varepsilon$

 where:

 $G_1 =$ grammar for R_1, with start symbol S_1

 $G_2 =$ grammar for R_2, with start symbol S_2

Sum Grammar

- Grammar:

 $S \rightarrow E + S | E$

 $E \rightarrow \text{number } | (S)$

 Expanded:

 $S \rightarrow E + S$

 2 non-terminals (S, E)

 $E \rightarrow \text{number } | S$

 4 terminals: (), +, number

 start symbol S

- Example accepted input:

 $(1 + 2 + (3 + 4)) + 5$

Derivation Example

$S \rightarrow E + S | E$

$E \rightarrow \text{number } | (S)$

Derive $(1 + 2 + (3 + 4)) + 5$:

$S \rightarrow E + S \rightarrow (S) + S \rightarrow (E + S) + S$

$\rightarrow (1 + S) + S \rightarrow (E + S) + S$

$\rightarrow (1 + 2 + (3 + 4)) + S$

$\rightarrow (1 + 2 + (3 + 4)) + S$

$\rightarrow (1 + 2 + (3 + 4)) + E$

$\rightarrow (1 + 2 + (3 + 4)) + S$

Constructing a Derivation

- Start from S (start symbol)

 Use productions to derive a sequence of tokens from the start symbol

- For arbitrary strings α, β and γ and for a production $A \rightarrow \beta$

 a single step of derivation is:

 $\alpha A \gamma \Rightarrow \alpha \beta \gamma$

 (i.e., substitute β for an occurrence of A)

- Example:

 $S \rightarrow E + S \rightarrow (S) + E \rightarrow (E + S) + E$

Parse Tree

- Parse Tree = tree representation of the derivation

 Leaves of tree are terminals

 Internal nodes: non-terminals

 No information about order of derivation steps

Derivation \Rightarrow Parse Tree

$S \rightarrow E + S \rightarrow (S) + S \rightarrow (E + S) + S \rightarrow (1 + E + S) + S \rightarrow (1 + S) + (E + S) + S \rightarrow (1 + 2 + (3 + 4)) + E$

$\Rightarrow (1 + 2 + (3 + 4)) + S$
Parse Tree vs. AST

- Parse tree also called "concrete syntax"

```
S
E + S
E

Parse Tree
(Concrete Syntax)
```

Abstract Syntax Tree

```
+ 5
1 2
3 4
```

Derivation order

- Can choose to apply productions in any order; select any non-terminal: $\alpha \gamma \Rightarrow \alpha \beta$
- Two standard orders: left- and right-most -- useful for different kinds of automatic parsing
- **Leftmost derivation:** In the string, find the left-most non-terminal and apply a production to it

 $$E + S \rightarrow 1 + S$$
- **Rightmost derivation:** Find right-most non-terminal... etc.

 $$E + S \rightarrow E + E + S$$

Example

- $S \rightarrow E + S | E$

 $E \rightarrow \text{number}$ | (S)
- **Left-most derivation**

 $$S \rightarrow E + S \rightarrow (E + S) \rightarrow (1 + S) \rightarrow (1 + E + S) \rightarrow (1 + (E + S)) \rightarrow (1 + 2 + E + S) \rightarrow (1 + 2 + (E + S)) \rightarrow (1 + 2 + (3 + 4)) \rightarrow 5$$
- **Right-most derivation**

 $$S \rightarrow E + S \rightarrow (E + E + S) \rightarrow (E + (E + E) + S) \rightarrow (E + (E + (E + E)) + S) \rightarrow (E + (E + (E + (E + E)))) + S \rightarrow (E + (E + (E + (E + (E + E))))) + S$$
- **Same parse tree:** same productions chosen, diff. order

Ambiguous Grammars

- In example grammar, left-most and right-most derivations produced identical parse trees

 $$+ \text{ operator associates to right in parse tree regardless of derivation order}$$

 $$(1 + 2 + (3 + 4)) + 5 \Rightarrow 5$$

An Ambiguous Grammar

- $+$ associates to right because of right-recursive production: $S \rightarrow E + S$

 Consider another grammar:

 $$S \rightarrow E + S | S * S | \text{number}$$
- **Ambiguous grammar** = different derivations produce **different parse trees**
- **Differing Parse Trees**

$$S \rightarrow S + S | S * S | \text{number}$$

- Consider expression $1 + 2 * 3$

 Derivation 1:

 $$S \rightarrow S + S \rightarrow 1 + S \rightarrow 1 + S * S \rightarrow 1 + 2 * S \rightarrow 1 + 2 * 3$$
- **Derivation 2:**

 $$S \rightarrow S * S \rightarrow S * 3 \rightarrow S + S * 3 \rightarrow S + 2 * 3 \rightarrow 1 + 2 * 3$$
Impact of Ambiguity

- Different parse trees correspond to different evaluations!
- Meaning of program not defined

\[
\begin{align*}
 1 & \ast 2 & \ast 3 = 7 \\
 1 & \ast 2 & 3 = 9
\end{align*}
\]

Eliminating Ambiguity

- Often can eliminate ambiguity by adding non-terminals & allowing recursion only on right or left

\[
\begin{align*}
 S & \rightarrow S + T | T \\
 T & \rightarrow T * \text{num} | \text{num}
\end{align*}
\]

\[
\begin{align*}
 S & \rightarrow S + T \\
 T & \rightarrow T * 3
\end{align*}
\]

- T non-terminal enforces precedence
- Left-recursion : left-associativity

CFGs

- Context-free grammars allow concise syntax specification of programming languages
- CFGs specifies how to convert token stream to parse tree (if unambiguous!)
- Read Appel 3.1, 3.2