CS412/413

Introduction to Compilers
Radu Rugina

Lecture 4: Lexical Analyzers
28 Jan 02

Outline

e DFA state minimization
e Lexical analyzers

¢ Automating lexical analysis
¢ Jlex lexical analyzer generator

CS412/413 Spring 2002 Introduction to Compilers

Finite Automata

¢ Finite automata:
— States, transitions between states
— Initial state, set of final states

¢ DFA = deterministic
— Each transition consumes an input character
— Each transition is uniquely determined by the input character

¢ NFA = non-deterministic

— There may be e-transitions, which do not consume input
characters

— There may be multiple transitions from the same state on
the same input character

CS412/413 Spring 2002 Introduction to Compilers 3

From Regexp to DFA

e Two steps:
— Convert the regular expression to an NFA
— Convert the resulting NFA to a DFA

¢ The generated DFAs may have a large number of
states

¢ State Minimization = optimization which converts a
DFA to another DFA which recognizes the same
language and has a minimum number of states

CS 412/413 Spring 2002 Introduction to Compilers

State Minimization

e Example:

—DFA1:

AL b
— DFA2: (0) - (1) - @

— Both DFAs accept: b*ab*a

CS 412/413 Spring 2002 Introduction to Compilers 5

State Minimization

¢ Idea: find groups of equivalent states
— all transitions from states in one group G, go to
states in the same group G,
— construct the minimized DFA such that there is

one state for each group of states from the initial
DFA

CS412/413 Spring 2002 Introduction to Compilers

DFA Minimization Algorithm

Step 1: Construct a partition P of the set of states having two groups:
F = the set of final (accepting) states
S-F = set of non-final states

Step 2:
Repeat LetP = G; U ... U G, the current partition
Partition each goup G; into subgroups:

Two states s and t are in the same subgroup if, for each
symbol a there are transitions s - s’andt - t'and s’, t’
belong to the same group G;

Combine all the computed subgroups into a new partition P
until P = P’
Step3: Construct a DFA with one state for each group of states in the
final partition P

CS412/413 Spring 2002 Introduction to Compilers

Optimized Acceptor

Regular
Expression

Minimize DFA

Input DFA N { Yes, if w O L(R)

sting " | LSimulation [" | No, if w OL(R)

CS 412/413 Spring 2002 Introduction to Compilers 8

Lexical Analyzers vs Acceptors

e Lexical analyzers use the same mechanism,
but they:
— Have multiple RE descriptions for multiple tokens
— Have a character stream at the input

— Return a sequence of matching tokens at the
output (or an error)

— Always return the longest matching token

— For multiple longest matching tokens use rule
priorities

CS 412/413 Spring 2002 Introduction to Compilers

Lexical Analyzers

REs for _Ll RE=NFA
Tokens R] NFA = DFA
Minimize DFA
!
Character DFA

program —— . I~ Token stream
Stream
Simulation (and errors)

CS412/413 Spring 2002 Introduction to Compilers 10

Handling Multiple REs

« Combine the NFAs of all the regular expressions into a
single finite automata

Minimized DFA

O
00000

CS 412/413 Spring 2002 Introduction to Compilers 1

Lexical Analyzers

e Token stream at the output
— Associate tokens with final states
— Output the corresponding token when reaching a final state

¢ Longest match

— When in a final state, look if there is a further transition;
otherwise return the token for the current final state

¢ Rule priority

— Same longest matching token when there is a final state
corresponding to multiple tokens

— Associate that final state to the token with the highest
priority

CS 412/413 Spring 2002 Introduction to Compilers 12

Automating Lexical Analysis

o All of the lexical analysis process can be
automated !
— RE - DFA - Minimized DFA
— Minimized DFA - Lexical Analyzer (DFA
Simulation Program)

* We only need to specify:
— Regular expressions for the tokens
— Rule priorities for multiple longest match cases

CS 412/413 Spring 2002 Introduction to Compilers 13

Lexical Analyzer Generators

REs for m | Jlex
Tokens Compiler

javac
Compiler

Character |program | I lex.class i‘ Token stream
Stream (and errors)
CS 412/413 Spring 2002 Introduction to Compilers 14

Jlex Specification File

¢ Jlex = Lexical analyzer generator
— written in Java
— generates a Java lexical analyzer

¢ Has three parts:
— Preamble, which contains package/import declarations
— Definitions, which contains regular expression abbreviations
- Regular expressions and actions, which contains:
« the list of regular expressions for all the tokens
* Corresponding actions for each token (Java code to be
executed when the token is returned)

CS412/413 Spring 2002 Introduction to Compilers 15

Example Specification File

Package Parse;

Import ErrorMsg.ErrorMsg;

%%

digits = 0|[1-9][0-9]*

letter = [A-Za-z]

identifier = {letter}({letter}|[0-9_])*

whitespace = [\ \t\n\r]+

%%

{whitespace} {/* discard */}

{digits} { return new
IntegerConstant(Integer.parselnt(yytext()); }

“if” { return new IfToken(); }

“while” { return new WhileToken(); }

{identifier} { return new IdentifierToken(yytext()); }

. { ErrorMsg.error(“illegal character”); }

CS412/413 Spring 2002 Introduction to Compilers 16

Start States

Mechanism which specifies in which state to start the
execution of the DFA

Define states in the second section

- %state STATE

¢ Use states as prefixes of regular expressions in the
third section:

— <STATE> regex {action}

Set current state in the actions

— yybegin(STATE)

There is a pre-defined initial state: YYINITIAL

CS 412/413 Spring 2002 Introduction to Compilers 17

%state COMMENT

%%

<YYINITIAL> “if” { return new IfToken(); }
<YYINITIAL> “(*" { yybegin(COMMENT); }
<COMMENT> “*)” { yybegin(YYINITIAL); }
<COMMENT> . 3

CS 412/413 Spring 2002 Introduction to Compilers 18

Start States and REs

» The use of states allow the lexer to recognize
more than regular expressions (or DFAs)

— Reason: the lexer can jump across different states
in the semantic actions using yybegin(STATE)

Example: nested comments

— Increment a global variable on open parentheses
and decrement it on close parentheses

— When the variable gets to zero, jump to YYINITIAL

— The global variable essentially models an infinite
number of states!

CS 412/413 Spring 2002 Introduction to Compilers 19

Conclusion

Regular expressions: concise way of specifying
tokens

Can convert RE to NFA, then to DFA, then to
minimized DFA

Use the minimized DFA to recognize tokens in the
input stream

Automate the process using lexical analyzer
generators

— Write regular expression descriptions of tokens

— Automatically get a lexical analyzer program which identifies
tokens from an input stream of characters

Read Chapter 2, Appel.

CS 412/413 Spring 2002 Introduction to Compilers 20

