Outline

- Regexpr review
- DFAs, NFAs
- DFA simulation
- RE-NFA conversion
- NFA-DFA conversion

Regular Expressions

- If R and S are regular expressions, so are:
 - \emptyset empty string
 - a for any character a
 - RS (concatenation: "R followed by S")
 - $R | S$ (alternation: "R or S")
 - R^* (Kleene star: "zero or more R's")

Regular Expression Extensions

- If R is a regular expressions, so are:
 - R^+ = $R | R$ (zero or one R)
 - R^* = $R^* | R$ (one or more R's)
 - (R) = R (no effect: grouping)
 - $[abc]$ = $a | b | c$ (any of the listed)
 - $[a-e]$ = $a | b | ... | e$ (character ranges)
 - $[^ a b]$ = $c | d | ...$ (anything but the listed chars)

Concepts

- Tokens = strings of characters representing the lexical units of the programs, such as identifiers, numbers, keywords, operators
 - May represent a unique character string (keywords, operators)
 - May represent multiple strings (identifiers, numbers)
- Regular expressions = concise description of tokens
 - A regular expression describes a set of strings
- Language denoted by a regular expression = the set of strings that it represents
 - $L(R)$ is the language denoted by regular expression R

How To Use Regular Expressions

- We need a mechanism to determine if an input string w belongs to the language denoted by a regular expression R
 - Input string w in the program
 - Regex R which describes a token
 - Yes, if w = token
 - No, if w \neq token

- Such a mechanism is called an acceptor
Acceptors

- **Acceptor** = determines if an input string belongs to a language L

\[
\text{Input String } \rightarrow \text{Acceptor} \rightarrow \begin{cases} \text{Yes, if } w \in L \\ \text{No, if } w \notin L \end{cases}
\]

- **Finite Automata** = acceptor for languages described by regular expressions

Finite Automata

- Informally, finite automata consist of:
 - A finite set of states
 - Transitions between states
 - An initial state (start state)
 - A set of final states (accepting state)

- Two kinds of finite automata:
 - **Deterministic finite automata (DFA)**: the transition from each state is uniquely determined by the current input character.
 - **Non-deterministic finite automata (NFA)**: there may be multiple possible choices or some transitions do not depend on the input character.

DFA Example

- Finite automaton that accepts the strings in the language denoted by the regular expression ab^*a

 - A graph
 \[
 \begin{array}{c}
 0 \\
 a \\
 1 \\
 a \\
 2 \\
 \end{array}
 \]

 - A transition table
 \[
 \begin{array}{c|cc}
 a & b & \text{Error} \\
 0 & 1 & 1 \\
 1 & 2 & 1 \\
 2 & \text{Error} & \text{Error} \\
 \end{array}
 \]

Simulating the DFA

- Determine if the DFA accepts an input string

```java
trans_table[NSTATES][NCHARS]
accept_states[NSTATES]
state = INITIAL

while (state != ERROR) {
    c = input.read();
    if (c == EOF) break;
    state = trans_table[state][c];
}
return accept_states[state];
```

RE → Finite automaton?

- Can we build a finite automaton for every regular expression?

- Strategy: build the finite automaton inductively, based on the definition of regular expressions

 - ϵ
 \[
 \begin{array}{c}
 \epsilon \\
 \end{array}
 \]

 - a
 \[
 \begin{array}{c}
 a \\
 \end{array}
 \]

 - $R \cup S$
 \[
 \begin{array}{c}
 R \cup S \\
 \end{array}
 \]

 - $R \cdot S$
 \[
 \begin{array}{c}
 R \cdot S \\
 \end{array}
 \]
NFA Definition

- A non-deterministic finite automaton (NFA) is an automaton where the state transitions are such that:
 - There may be ε-transitions (transitions which do not consume input characters)
 - There may be multiple transitions from the same state on the same input character

Example:

```
regexp?
```

RE \(\Rightarrow \) NFA intuition

```
- \([0-9]+\)  \((-[0-9]+[0-9]+\)?
```

NFA construction

- NFA only needs one start state (why?)
- Canonical NFA:

```
use this canonical form to inductively construct NFAs for regular expressions
```

Inductive NFA Construction

```
R S
```

```
R | S
```

```
R*
```

DFA vs NFA

- DFA: action of automaton on each input symbol is fully determined
 - obvious table-driven implementation
- NFA:
 - automaton may have choice on each step
 - automaton accepts a string if there is any way to make choices to arrive at accepting state / every path from start state to an accept state is a string accepted by automaton
 - not obvious how to implement!

Simulating an NFA

- Problem: how to execute NFA?
 - strings accepted are those for which there is some corresponding path from start state to an accept state
- Conclusion: search all paths in graph consistent with the string
- Idea: search paths in parallel
 - Keep track of subset of NFA states that string could be in after seeing string prefix
 - “Multiple fingers” pointing to graph
Example

- Input string: -23
- NFA states:
 \{0, 1\}
 \{1\}
 \{2, 3\}

![Diagram of NFA states with transitions]

NFA-DFA conversion

- Can convert NFA directly to DFA by same approach
- Create one DFA for each distinct subset of NFA states that could arise
- States: \{0, 1\}, \{1\}, \{2, 3\}

![Diagram of DFA states with transitions]

Algorithm

- For a set \(S\) of states in the NFA, compute
 \(\epsilon\)-closure\((S)\) = the set of states reachable from states in
 \(S\) by \(\epsilon\)-transitions

\[
T = S \\
\text{Repeat } T = T \cup \{s \mid \exists t \in T \text{ such that } (s, t, \epsilon) \in \text{transition}\} \\
\text{until } \text{T remains unchanged} \\
\epsilon\text{-closure}(S) = T
\]

- For a set \(S\) of states in the NFA, compute
 \(\text{DFA-\text{edge}}(S, c)\) = the set of states reachable from states in
 \(S\) by transitions on character \(c\) and \(\epsilon\)-transitions

\[
\text{DFA-\text{edge}}(S, c) = \epsilon\text{-closure}\{s \mid s \in S, (s', s) \text{ is \epsilon-transition}\}
\]

Algorithm

- Top-level algorithm:
 \(\text{DFA-initial-state} = \epsilon\text{-closure}(\text{NFA-initial-state})\)

 For each \(\text{DFA-state } S\)

 For each character \(c\)

 \(S' = \text{DFA-\text{edge}}(S, c)\)

 Add an edge \((S, S')\) labeled with
 character \(c\) in the DFA

 For each \(\text{DFA-state } S\)

 if \(S\) contains an \(\text{NFA-final-state}\)

 Mark \(S\) as \(\text{DFA-final-state}\)

Putting the Pieces Together

Regular
Expression \(R\)

\(\text{RE} \Rightarrow \text{NFA Conversion}\)

\(\text{NFA} \Rightarrow \text{DFA Conversion}\)

\(\text{DFA Simulation}\)

\{Yes, if \(w \in L(R)\) \No, if \(w \notin L(R)\}\)