I|ntel® Pentium®4
Processor Optimization

Reference Manual

Copyright © 1999-2001 Intel Corporation
All Rights Reserved

Issued in U.S.A.

Order Number: 248966

World Wide Web: http://developer.intel.com

http://developer.intel.com

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rightsis granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel
assumes no liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel productsincluding
liahility or warranties relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellec-
tual property right. Intel products are not intended for use in medical, life saving, or life sustaining applications.

This Intel Pentium 4 Processor Optimization Reference Manual as well as the software described in it is furnished under license and may
only be used or copied in accordance with the terms of the license. The information in this manual is furnished for informational use only,
is subject to change without notice, and should not be construed as a commitment by Intel Corporation. Intel Corporation assumes no
responsibility or liability for any errors or inaccuracies that may appear in this document or any software that may be provided in associa-
tion with this document.

Except as permitted by such license, no part of this document may be reproduced, stored in aretrieval system, or transmitted in any form or
by any means without the express written consent of Intel Corporation.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined.” Intel reserves
these for future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Pentium 4 processor may contain design defects or errors known as errata which may cause the product to deviate from published spec-
ifications. Current characterized errata are available on request.

* Third-party brands and names are the property of their respective owners.
Copyright © Intel Corporation 1999-2001.

Contents

Introduction
About ThisS Manualcooouiiiiiii e XXViii
Related DOCUMENTALIONceeiiiiiie e e e XXIX
Notational CoONVENLIONSooviiiiiiiiie e XXX

Chapter 1 Intel® Pentium® 4 Processor Overview

SIMD Technology and Streaming SIMD EXtensions 2cccccceeeevennne 1-2
Summary of SIMD Technologiesccoeeeviiieiiiiiii e, 1-4
MMX TECHNOIOGY ..eeeeiiiiiiiiiii e 1-4
Streaming SIMD EXtENSIONScccvvviiiiiiieiicceccree e, 1-5
Streaming SIMD EXIENSIONS 2........vviviiieeiiiiiiiieeee e 1-5
Intel® NetBurst™ MiICro-arChiteCture............ccccuvuvueiueiiieiiiieiiieieieieeeeeeeee. 1-6
The Design Considerations of the Intel NetBurst
MiCro-arChiteCtUre........ccoeei e 1-7
Overview of the Intel NetBurst Micro-architecture Pipeline 1-8
The FIONt ENdcooviiiiiiii e e 1-9
The OUut-Of-0rder COreuuuuiiiiiiiiiiiiiiiieiiieieeee e 1-10
RELIFEMENT ... e e e e e e eanans 1-11
Front End Pipeline Detail..............ccoovviiiiiiiii e, 1-12
PrefetChiNgee e 1-12
DECOUEN ... e 1-12
Execution Trace Cache.........oooieeiiiii i 1-13
Branch Prediction.............ooo s 1-13
Branch HINtSuuiiii e e 1-15
Execution Core Detail ... 1-15

Intel Pentium 4 Processor Optimization Contents

Instruction Latency and Throughput...........ccccooviiiviiiieeeeniiiiinnne. 1-16
Execution Units and ISSU€ POMS ..., 1-17

LT =3 1-18

Data PrefetCh ..., 1-19
(o= To L= Tg o IS (o] {1 PSSR 1-21
Store FOrwarding.......ooovvvieiiiiiiii e e 1-22

Chapter 2 General Optimization Guidelines

Tuning to Achieve Optimum Performance.............cccccevvvviiiiiiiieeeeeeeeiens 2-1
Tuning to Prevent Known Coding Pitfalls ... 2-2
General Practices and Coding Guidelines..........ccccccevviiiiiiiiiiiiiiiiin e, 2-3
Use Available Performance TOOIScuuuviiiiiiiiiiiiiiiiiiieiiieieeeeeeeee. 2-3
Optimize Performance Across Processor Generations 2-4
Optimize Branch Predictabilitycccooiiiiiiiiie 2-4
OptiMIZE MEMOIY ACCESS ..uvuuiiiieeiieieeeiiiie e e e e e e eeeeet s e e e e e e eeaenra s 2-4
Optimize Floating-point Performanceccccccceeeviiiiiiieecee e 2-5
Optimize Instruction Selectioncceviiiiiiiiiieee e, 2-5
Optimize Instruction Scheduling ... 2-6
Enable VEeCtOriZationuuuiiiiiiiiiiiiiiiiieieiiieiee et 2-6
Coding Rules, Suggestions and Tuning HiNtsccoooe e, 2-6
Performance TOOIS..........uuuuuiiiiiiiiiiiiiiiiib bbb eeeeeeees 2-7
INEI® CH+ COMPIIET ..o 2-7
General Compiler RecommendationsS............coevvviiiniiieeeeieeciiien e 2-8
VTune™ Performance ANAlYZerccuvvieiiiiiiiiiiiieee e 2-9
Processor Generations Perspectiveuccevieieeviieeiiiiic e eeeeeviins 2-9
The CPUID Dispatch Strategy and Compatible Code Strategy....... 2-11
Branch PrediCtion ... 2-12
Eliminating BranChesc..uuviiiiiiiieeee e 2-12
Spin-Wait and 1dle LOOPScoovveiviiieiiiiiiie e 2-15
Static PrediCtion ... 2-15
BranCh HINESuuiuiiiiiiiiiiiiiiiiiiiiie e 2-17
Inlining, Calls and RELUMScuuviiiiiiiiiiiieiiieieiee e 2-18
Branch Type SeleCtion..........ooouuuiiiiii e 2-19

Intel Pentium 4 Processor Optimization Contents

LOOP UNIOHING ... 2-20
Compiler Support for Branch Predictionccccccceeieiiiieveeveeiiiinnnnn, 2-21
MEMOIY ACCESSESiiieiieiieiiiiitee e e ettt e e e e e e e e e e 2-22
ANGNMENT ... e s 2-22
StOre FOrWANTING ..ccooeiiiiiiieie et 2-25
Store-forwarding Restriction on Size and Alignment................... 2-26
Store-forwarding Restriction on Data Availability 2-30
Data Layout OptimizationsS..........ccccoiveeeiiveeeiiiii e ee e e ee e 2-31
StaCK AlIGNMENT.....coiiiiiie e 2-34
AlIASING CASES ...cevvviiiiiiii e e e 2-35
Mixing Code and Dataceeeveeeiiiiiiiiiiieeeee e 2-36
Write COMDINING .oveeiiiii e e 2-37
Locality ENhanCementooovvuiiiiiiieiiieeeeiis e e e e e 2-38
PrefetChiNgooo e 2-39
Hardware Instruction FEtChingcccooevvievviveeiiiiicc e, 2-39
Software and Hardware Cache Line Fetchingcccccveveeenn. 2-39
Cacheability INStrUCIONSvuiiiiiiieie e, 2-40
0T [R 2-40
Improving the Performance of Floating-point Applications.................... 2-41
Guidelines for Optimizing Floating-point Codecccccvvveeeerinnnes 2-41
Floating-point Modes and EXCeptioNS..........cccevvvieeeviiiiiiiiiiinieeeeeeeeas 2-43
Floating-point EXCEPLIONSuviiiiiiiiiiiiieee e 2-43
Floating-point MOAES.......ccoiviiiiiieieicie e 2-45
Improving Parallelism and the Use of FXCHcccccoeiiiiiiiiinneenn. 2-49
x87 vs. SIMD Floating-point Trade-offscccceviiiiiiiiieiiiee, 2-50
MEMOIY OPEIANGSeeieieiiiiiiiiiie ettt e e 2-51
Floating-Point StallS..........ccooviiiiiiiii e 2-51
x87 Floating-point Operations with Integer Operands................ 2-52
x87 Floating-point Comparison INStructions...........cccceeevieeeeeeeenns 2-52
Transcendental FUNCLONS ..o 2-52
INSLrUCTION SEIECHONuuviiiiiiiiiiiiiiiiiiieii et 2-52
ComPIEX INSITUCTIONSuviiiiiee et 2-53

Intel Pentium 4 Processor Optimization Contents

Use of the [ea INSIrUCHIONevvviiiiiiiiiiiiiiiiiieeeeeee e 2-53
Use of the inc and dec INStructions................uuevviiiieiieiieeeiieeieieeeeeee. 2-54
Use of the shift and rotate INStructionsccceevvvevieviieeiieeeeenenen. 2-54
Integer and Floating-point MUltiply.........ocoiiiiiiiree e, 2-55
INtEGET DIVIAE ... 2-55
OPEraNd SIZESiieei et 2-55
Address CalCulationsScoevvviviiiiiiiiie e 2-57
Clearing REQISIEISccocvviiiiiie e e e ee e 2-58
COMPAIES ... e 2-58
Floating Point/SIMD Operandscccovuvuviiiiiieeeeeeeeeiiiis s eeeee e e 2-59
Prolog SEQUENCEScoooeiiiitiiii et 2-60
Code Sequences that Operate on Memory Operands 2-60
Instruction SChedulingccouviiiiiii e 2-61
Latencies and Resource CONSraintS..........c.eueeveeeeeeieeiieeeeeeeeeeeeenenen. 2-62
SPIll SChedulingooooir s 2-62
Scheduling Rules for the Pentium 4 Processor Decoder................. 2-63
AV L=Tex o] g7 1 o] o [P PP 2-63
Y TETo =] = T T=To 11 L PP 2-64
NOP'S <.ttt 2-64
Summary of Rules and SUQQESLIONScocuuviiiiiiieiieee e 2-65
User/Source Coding RUIEScoiviiiiiiiiiiiici e 2-66
Assembly/Compiler Coding RUIESooviiiiiiiiiiiiiieee e 2-68
TUNING SUQQJESHIONS ..ceviieiiie et e e e 2-74
Chapter 3 Coding for SIMD Architectures
Checking for Processor Support of SIMD Technologies...............c..uee.... 3-2
Checking for MMX Technology SUpportcooevvviieiiieeeeeeeeiiii, 3-2
Checking for Streaming SIMD Extensions SUpport..........cccccceveuvnee. 3-3
Checking for Streaming SIMD Extensions 2 Support........ccccccceeenn... 3-4
Considerations for Code Conversion to SIMD Programming................. 3-6
Identifying HOt SPOLS.....cccoviiiiecce e 3-8
Determine If Code Benefits by Conversion to SIMD Execution......... 3-9
Coding TECNNIQUESceeeiiiie e s 3-10

Intel Pentium 4 Processor Optimization Contents

Coding MethodOIlOGIESccceiiiiiiiiiiii e 3-10
ASSEIMDIY ..t e 3-12
a1 1= o= USSR 3-13
ClaSSES .. 3-14
Automatic VeCtOrzation..........ccuvviveiiiiieeeeeeeeeeeeeeeeeeeeee 3-15

Stack and Data AlIgNMENt...........oooeviiiiiii e 3-16

Alignment and Contiguity of Data Access Patternsccc...... 3-17
Using Padding to Align Datacceeevveeviiiiiii e 3-17
Using Arrays to Make Data ContiguousSceeeveeveveeieeeeereeennn. 3-17

Stack Alignment For 128-bit SIMD Technologies.............cccevvvvvvvnnnn. 3-19

Data Alignment for MMX Technologyccccouriiiiiiiieeniiiiiiiieeeen. 3-19

Data Alignment for 128-bit data...........ccoeeevviiiiii e 3-20
Compiler-Supported AlIgNMeNt...........covveeiiiieeiiirce e 3-21

Improving Memory ULIHZAtioNn ... 3-23
Data StruCture LayOuUL........coeveeeiieiiii e 3-23
SAP MINING i e e 3-28
[IoTo] o =1 o T3 (] o SRR 3-30
INSLrUCLION SEIECHIONuviiiiiiiiiiiiiiiiiiiii e e 3-33
Tuning the Final ApPlICAtIONvuiiiii i e e e 3-34
Chapter 4 Optimizing for SIMD Integer Applications

General Rules on SIMD Integer Code.........cooooviiiiiieeiiniiiiiiieeee e 4-2
Using SIMD Integer with x87 Floating-pointccoeeeeviiiieeivieiiiinn. 4-2

Using the EMMS INSTIUCTIONcoviiiiiiiiiiiieee e 4-3

Guidelines for Using EMMS INStrUCtioNcooevvviiiiiiiieeeeeceeiii, 4-4
Data AlIGNMENT ... 4-5
Data Movement Coding TEChNIQUES...........uuiiiiiiieiiiiieicee e, 4-5

UNSIgNed UNPACKoviiiiiiiiiiee e 4-5

SIgNEd UNPACK ...uiiiiciie e e 4-6

Interleaved Pack with Saturationcccccccvvveviiiiiiieeee 4-7

Interleaved Pack without Saturationeeeeeveeiiiiiiiiiieeiinninenenn. 4-9

Non-Interleaved UnNpPack ... 4-10

[q i = Tod ALY (o] { o PP PPPPPPPP 4-12

intel ® vii

Intel Pentium 4 Processor Optimization Contents

T TST =T Yo o PR 4-13
Move Byte Mask t0 INtEQETuuvieiii e 4-15
Packed Shuffle Word for 64-bit Registers...........cccccvveeriiiiiiiiieeeeenn. 4-17
Packed Shuffle Word for 128-bit Registers..........ccccvvvvvviiinieeneinnnnns 4-18
Unpacking/interleaving 64-bit Data in 128-bit Registers.................. 4-19
Data MOVEMENT ... e e 4-20
Conversion INSIIUCLIONSccooeii i 4-20
Generating CoONSLANTS.......uuiiii e e s 4-20
BUIlAING BIOCKS ...t 4-21
Absolute Difference of Unsigned Numbers.............cccevvvvvvviicienenenn, 4-22
Absolute Difference of Signed NUMDErS..........ococviiiiiiiiiiiiiiiiieeeeen, 4-22
ADSOIULE VaAlUE ... 4-24
Clipping to an Arbitrary Range [high, low]cccccoeiiiiiiiiiiiiiin. 4-24
Highly Efficient CHIPPINGccvvviiieeie e 4-25
Clipping to an Arbitrary Unsigned Range [high, low]................... 4-27
Packed Max/Min of Signed Word and Unsigned Byte 4-28
YT T=T0 IRV o] o USSP 4-28
UNSIGNEA BYLE ... 4-28
Packed Multiply High Unsigned............oouiiiiii e 4-28
Packed Sum of Absolute Differencescccuvvveeviveviviiviiiveiieiieeeee, 4-28
Packed Average (Byte/Word)cccooveeiivieeiiiiiiii e 4-29
Complex Multiply by @ CONStantccoooiiiiiiiiiiieeeeiiiieeeee e 4-30
Packed 32*32 MUILIPIYcooerrieiies e e e 4-31
Packed 64-bit Add/Subtractccccuveiiiiiiiiiiiiiiieee e 4-31
128-Dit SNIftS ..ceeeieiiiieeiee e 4-31
MemOory OPLtiMIZAIONSc.oiieiiiiiiie et 4-31
Partial MemOry ACCESSESccuuuuuiiiiieeeeeeeeeiiiis s e e e e e eeeeannaneeeeeeeeenes 4-32
Increasing Bandwidth of Memory Fills and Video Fills..................... 4-34

Increasing Memory Bandwidth Using the MOVDQ Instruction ... 4-35

Increasing Memory Bandwidth by Loading and Storing to
and from the Same DRAM Pagecccccviiviieiiiiiiiiiieeee e 4-35

inte|® viii

Intel Pentium 4 Processor Optimization Contents

Increasing UC and WC Store Bandwidth by Using

F 1o T=Te IR (o] =S 4-35
Converting from 64-bit to 128-bit SIMD INte€ger........cccoevuvvvvveeeeriiinnne 4-36
Chapter 5 Optimizing for SIMD Floating-point Applications
General Rules for SIMD Floating-point Codecccovvviviiiiiiieeeeeeeeens 5-1
Planning ConsSiderationsS..............ueiieeiiiiiiiiiieee e 5-2
Detecting SIMD Floating-point SUPPOIt........cccoeveevivirieiiiiiiiniee e, 5-2
Using SIMD Floating-point with x87 Floating-point............ccccccoeecvvveeeen. 5-3
Scalar Floating-point Codeoovviiiiiiiiii e 5-3
Data AlIGNMENT ... 5-3
Data ArrangemMENTcieeeiiiee e 5-4
Vertical versus Horizontal Computationcccccceeeeeriiiiiiienennn. 5-4
Data SWIZZIING......cooeeeiiice e e 5-7
Data DeSWIZZIING.....ceviieiiiiiiiiieeeeee e 5-11
Using MMX Technology Code for Copy or Shuffling Functions .. 5-15
HONZONEAI ADD ..ot 5-15
Use of cvitps2pi/cvitsS2Si INSIrUCLIONSeieie e, 5-19
FIUSN-10-ZEI0 MOUEviiiiiiiiiiiiiiiiiiiiieeiete et e e e e e e e eeee s 5-19

Chapter 6 Optimizing Cache Usage for Intel Pentium 4 Processors

General Prefetch Coding GUIdeliNeSccooiiviiiiiiiiiiiiiieee e 6-2
Prefetch and Cacheability INStructionsccceevvvvviiiieiie e, 6-3
[1= 1= (o o PP 6-4
Software Data PrefetCh..........oooooiiii s 6-4
Hardware Data PrefetCh ... 6-5
The Prefetch Instructions — Pentium 4 Processor Implementation.... 6-6
Prefetch and Load INStrUCHIONScovviviiiiiiiiiiiiiee e 6-7
Cacheability CoNtrolcoeiii i 6-8
The Non-temporal Store INSIrUCIONScccoviiiiiiiiiiiie e 6-8
=] 1o T P 6-9
Streaming Non-temporal StOresS..........cooovviiiiiiieeiiiiiiiieeee s 6-9

Intel Pentium 4 Processor Optimization Contents

Memory Type and Non-temporal StOresccccveeeeeeeriinvieneeenn. 6-9
Write-Combiningoovviiiii s 6-10
Streaming Store Usage MOAEIS..........oooviiiiiiiiiiiiiieieiieeee e 6-11
Coherent REQUESEScceviiiiiiiie et a e e e e 6-11
NON-CONEIEeNt rEQUESES. ...t 6-11
Streaming Store Instruction Descriptions...........cccuvveeiiviieeveeveeeiinnnn, 6-12
The fence INSrUCtiONSooovvvviiiii e, 6-13
The sfence INSrUCHIONooooi i s 6-13
The Ifence INStruCtioN..........oooiiii s 6-14
The mfence INStruction............oooor i 6-14
The clflush INSrUCHONccvvviiiiiii e 6-14
Memory Optimization Using Prefetch........ccccoooviviiiiiiiiiieeie, 6-16
Software-controlled Prefetch ... 6-16
Hardware PrefetCh...... e ittt 6-16
Example of Latency Hiding with S/W Prefetch Instruction............... 6-17
Prefetching Usage ChecKIiSt.............occuviiiiiiiiiiiiiieeeee e 6-19
Prefetch Scheduling DiStancCe............ccovvvveiiiiiii e 6-19
Prefetch Concatenationueeeeeeeiiiiiiieiiieiiiee e ee e 6-21
Minimize Number of Prefetches. ..., 6-23
Mix Prefetch with Computation INStructions............ccccceeevviiiiieeeeenn. 6-26
Prefetch and Cache Blocking Techniquescccccvvvivieiiiieeeceeeinns 6-28
Single-pass versus Multi-pass EXECULioNcccccovviiviiiiiieeeninnnnns 6-33
Memory Optimization using Non-Temporal Stores.............coeevvevvevvennnn. 6-36
Non-temporal Stores and Software Write-Combining...................... 6-36
Cache Managementcceiiii i e e 6-37
V4T F=To TN =g (oo Lo [=] SRR 6-37
VidE0 DECOUETcovviiiiiiiiiiiiii e, 6-38

Conclusions from Video Encoder and Decoder Implementation. 6-38
Using Prefetch and Streaming-store for a Simple

1V T=T0 0] VK O o] o)V PP 6-38
TLB PrIMING .ot 6-39
Optimizing the 8-byte Memory COPY......ccccevvieeeeiiieeiiiiiiiieeeeeeeeenns 6-40

Intel Pentium 4 Processor Optimization Contents

Chapter A Application Performance Tools

INtEl COMPIIETS. ... A-2
Code Optimization OPLIONSccovviiiiiiiiire e e A-3
Targeting @ ProcesSsor (-GNcccuvvvrriieeeieiiiieee e A-3
Automatid®rocessobispatctsuppor(-Qx[extensionsdndQax[extensions])
A-3
Vectorizer SWItCh OPLIONSeiiiiiiiiiiiiie e A-4
PrefetChing ... e A-4
LOOP UNIOHING ..o A-4
Multithreading with OpenMPccccooiiiiiiiii e A-5
Inline Expansion of Library Functions (-Oi, -Oi-)ccoeeeiiiiiiiieieeennn. A-5
Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, -Qprec_div,
-Qpc, -QIoNg_dOUDBIE)ceeeeeiice i A-5
Rounding Control Option (-Qrcd)ccovvvvviiiiiiiiiiieeeeeeeec e A-5
Interprocedural and Profile-Guided Optimizations..............cccccvvveeennn. A-6
Interprocedural Optimization (IPO)cccovvviiiiiiiiee e A-6
Profile-Guided Optimization (PGO)........ccceeeeiiiiiiiiieee e A-6
VTune™ Performance ANAIYZEr.........coovvuiiiiiiiiie e A-7
Using Sampling Analysis for Optimizationc.ccccvvvvveeeeniniiennn. A-7
Time-based Samplingcooeiiiiiiiiii e A-7
Event-based Samplingccovvieoiiiiiii e A-9
Sampling Performance Counter EVeNtS...........ccccevvvvviiiiieeeeeeeennnns A-9
Call Graph Profiling............ceeeeiiiiiiiiiiieee e A-12
Call Graph WINAOWcccoviiiiiiiii e e e ee e A-12
Static Code ANAIYSIS........uuviiiiiee et A-14
Static Assembly ANAIYSISuuviiiiiiiiiiicer e A-15
Code Coach Optimizationsceveeeeriiiiiieiieee e A-15
Assembly Coach Optimization Techniques..........cc..coeeevvvvievvnnnn. A-18
Intel® Performance Library SUIte ..o A-19
Benefits SUMMAIYcoiii i e e A-19
Libraries ArChiteCIUIeevuviiiiiiiiiiieeeeeeeee e A-20
Optimizations with the Intel Performance Library Suite A-21

Intel Pentium 4 Processor Optimization Contents

Enhanced Debugger (EDB).........ouiiiiiiiiiiiiiiiieee e A-21
Intel® Architecture Performance Training Center.........c.ccooeeevvevvvvnnnnnn. A-22

Chapter B Intel Pentium 4 Processor Performance Metrics

Pentium 4 Processor-Specific Terminologycoevvvvvceiiiiieeveeeieiiinnn. B-1
Bogus, NON-boguS, RELIFEuvviiiiiiiiiiiiiieeeeee et B-1
BUS RALIO ..uuttttiiiiiiiiiiie ittt ettt ettt e e e e e e e e e e e e e e e B-2
REPIAY ...t s B-2
AASSIST Lttt e et e e e e e e e e e e e e e e e e aaaaas B-2
TAGGING ettt e e B-3

Metrics Descriptions and Categories..........uuiveiiieeerieeeeiiiiiene e eeeeeeeaenennn B-3

Performance Metrics and Tagging Mechanisms...........ccccccovvviiviieeeenn. B-13
Tags for replay_EVEeNt ... B-13
Tags for front_end_event.......ccccoveviiiii B-14
Tags for eXeCULION_BVENL.......ccoiieeeeiicer e e e B-15

CoUNtING CIOCKS .ot B-16

Chapter C 1A-32 Instruction Latency and Throughput

OVEIVIBW.....coiiiiiiiie e C-1

DEfINILIONS ...ttt et e e e e e e e e e e e e e e aaaaaaaaaas C-3

Latency and Throughput...........ouiiiiii e C-4

Latency and Throughput with Register Operandsccccceeveeeen. C-5
Table FOOINOLES. ... s C-14
Latency and Throughput with Memory Operands..............ccccceee..... C-15
Chapter D Stack Alignment

StaCK Frames ...oooviiiiiiieeeee s D-1
Aligned esp-Based Stack Framescccccciiiiiii e D-4
Aligned ebp-Based Stack Framesccccoiiiiiiiiiiieiiniiiiieeeeee D-6
Stack Frame OptimizationS.........ccoovvviiiiiinie e D-9

Inlined Assembly and ebX............oovviiiiiiiii D-9

intel ® Xii

Intel Pentium 4 Processor Optimization Contents
Chapter E Mathematics of Prefetch Scheduling Distance
Simplified EQUALTION...........uiiiiiii e E-1
Mathematical Model fOr PSD...........uuuiiiuiiiiiiiiiiiiiiiiiiiieiiieiieeeieeeeeieeeeeeeeee E-2
No Preloading or PrefetChoooviiiiiiiiiiiiieieiee e E-5
Compute Bound (Case:TC >= T+ Tp)..ccooeeriiiiiiiiiiiiie i E-7
Compute Bound (Case: TI+ Th>Tc > Th)..oooooiiceicciiiiies E-8
Memory Throughput Bound (Case: Th >=TC)ccevvvvvvvveeiiiieeeieeens E-9
EXAMPIE .. E-10
Index
Examples
2-1 Assembly Code with an Unpredictable Branch 2-13
2-2 Code Optimization to Eliminate Branches............cccccoevvivieninnnn, 2-13
2-3 Eliminating Branch with CMOV Instruction.............ccccceeevnnnnnee. 2-14
2-4 Use of pause INSIFUCHIONcoooeiiiiiiiiiie e 2-15
2-5 Pentium 4 Processor Static Branch Prediction Algorithm.......... 2-16
2-6 Static Taken Prediction EXamplecccoooeevvviiiiiiiiiiiieee e, 2-16
2-7 Static Not-Taken Prediction Examplecccovveeiiiiiiiiinnneenn. 2-17
2-8 [IoTo] o I8 11 {01111 o [2-21
2-9 Code That Causes Cache Line Splitccccvvvieeeniiiiiiiinneeenn. 2-24
2-10 Several Situations of Small Loads After Large Store 2-27
2-11 A Non-forwarding Example of Large Load After Small Store 2-28
2-12 A Non-forwarding Situation in Compiler Generated code.......... 2-28
2-13 Two Examples to Avoid the Non-forwarding Situation in
EXaMPIE 2-12 .. 2-28
2-14 Large and Small Load StallS...........ccceevviiiiiiii e 2-29
2-15 An Example of Loop-carried Dependence Chain 2-31
2-16 Rearranging a Data Structure...........ccccccveiiiii e 2-31
2-17 DecompOSIiNg @N AITAYcccuuvrrreeeeeeiiiiiiree e e e e e e e s 2-32
2-18 Dynamic Stack Alignment...........ccooovvviviiiiiiii e 2-34
2-19 Algorithm to Avoid Changing the Rounding Mode..................... 2-47
intgl. i

Intel Pentium 4 Processor Optimization Contents

2-20 False Dependencies Caused by Referencing Partial

YT 5] (] 2-56
2-21 Recombining LOAD/OP Code into REG,MEM Form................. 2-61
2-22 Spill Scheduling Example Codecovvciiiiiiieiieicccin e 2-62
3-1 Identification of MMX Technology with cpuid............cccceeeiiiinnee 3-2
3-2 Identification of SSE with cpui dcoooviiiiiiiiiiiie e, 3-3
3-3 Identification of SSE by the OS ... 3-4
3-4 Identification of SSE2 with cpui dcooooviiiiiiiiiiiie 3-5
3-5 Identification of SSE2 by the OS ... 3-5
3-6 Simple Four-lteration LOOPccovvviviiiiiiiieeeeeeeeicen e 3-11
3-7 Streaming SIMD Extensions Using Inlined Assembly

ENCOAING....eiiiiiiiiie e 3-12
3-8 Simple Four-Iteration Loop Coded with Intrinsics...................... 3-13
3-9 C++ Code Using the Vector Classes..........cceveeeiieiieii e 3-15
3-10 Automatic Vectorization for a Simple LOOpP........cccceevvvviinnieeenn. 3-16
3-11 C Algorithm for 64-bit Data Alignment...........cccooccviiiiieeeennnnne 3-20
3-12 A0S data SITUCIUIE.....ccoeeeiieeeeee e 3-24
3-13 SOA data STUCIUIE....ceee e 3-24
3-14 A0S and SoA Code Samplescocovvvviviiiiiiiie e 3-25
3-15 Hybrid SOA data SITUCLUIEccooeiiiiiiiiiiiie e 3-27
3-16 Pseudo-code Before Strip MiNiNG..........ccvviiiiiiiieeiieieicciee e 3-29
3-17 Strip MiNed COUEoeviiiiiiiiiiiie e 3-30
G T T o o 1 =] (o od 14 T I 3-31
3-19 Emulation of Conditional MOVES.............ccooeeiiieiiiiiiee e 3-33
4-1 Resetting the Register between __m64 and FP Data Types....... 4-4
4-2 Unsigned Unpack INStrUCHIONSoovieeiiiiiiiiiiiie e 4-6
4-3 Signed Unpack Code.........uuceiiiiiiiiiieeie e 4-7
4-4 Interleaved Pack with Saturationcccceeeeveeeeeeiieeiieeieeeeeeee, 4-9
4-5 Interleaved Pack without Saturationccccccceviiiiin. 4-10
4-6 Unpacking Two Packed-word Sources in a Non-interleaved

WV .t et e e e e 4-12
4-7 pextrw INStruction Code.........ccccoieiiiiiiiiiiiiiieeieeee e 4-13
4-8 PINSIW INSErUCtion COdec.vvvviiiiiiieiirceecr e e 4-14

i ntel) Xiv

Intel Pentium 4 Processor Optimization Contents

4-9 Repeated pinsrw Instruction Codeevvvvvviiiiiiiiiiiiiieeneee. 4-15
4-10 pmovmskb Instruction Code...........cuvvvieiiiieeiiieeiicn e 4-16
4-11 pshuf INStruction COde.........cuvviiiiiieeiiie e 4-18
4-12 Broadcast using 2 iNStrUCtIONS...........cuviiiiieeeieieiiiiiies e e e e eeeeenns 4-18
4-13 Swap uSiNg 3 INSTIUCHIONSuvviiiieeiiiiiiiieee e 4-19
4-14 Reverse using 3 iNStrUCHIONScoeevviiiiiiiii e 4-19
4-15 Generating CONSTANTS.........ocuviiiiieie et 4-20
4-16 Absolute Difference of Two Unsigned Numbers........................ 4-22
4-17 Absolute Difference of Signed NUMDErScccoovviiiiiiieinnnnnne. 4-23
4-18 Computing Absolute Valuecoouuiiiiiiiiiiiii e, 4-24
4-19 Clipping to a Signed Range of Words [high, low] 4-25
4-20 Clipping to an Arbitrary Signed Range [high, low]...................... 4-26
4-21 Simplified Clipping to an Arbitrary Signed Range...................... 4-26
4-22 Clipping to an Arbitrary Unsigned Range [high, low].................. 4-27
4-23 Complex Multiply by a Constant..........ccccooeeeviviiiiiiiiiieeccceeiie 4-30
4-24 A Large Load after a Series of Small Stores (Penalty).............. 4-32
4-25 Accessing Data without Delaycccceeiviieeiiiiciiiiiiie e, 4-33
4-26 A Series of Small Loads after a Large Storecccccevveeernnne 4-33
4-27 Eliminating Delay for a Series of Small Loads after a

[T (0 TS (0] £ S 4-34
5-1 Pseudocode for Horizontal (xyz, AoS) Computation 5-6
5-2 Pseudocode for Vertical (xxxX, yyyy, zzzz, SoA) Computation.... 5-7
5-3 SWIZZIING DATAeeeieeeeiiiiieie e 5-8
5-4 Swizzling Data Using INtriNSICS.........ccuuviiiiiiieeieiceeiien e 5-9
5-5 Deswizzling Single-Precision SIMD Data............cccccvveeeenninnee. 5-11
5-6 Deswizzling Data Using the movlhps and shuffle Instructions .. 5-13
5-7 Deswizzling Data 64-bit Integer SIMD Dataccccceveeeeeninne 5-14
5-8 Using MMX Technology Code for Copying or Shuffling............. 5-15
5-9 Horizontal Add Using movhlps/movInps.........ccccocciviieiieiinnnee. 5-17
5-10 Horizontal Add Using Intrinsics with movhlps/movihps 5-18
6-1 Pseudo-code for Using CfluSh..........cooooiiiiiiiiiiicec 6-15
6-2 Prefetch Scheduling DiStancecccccvvvvvviiiiiie e 6-20

Intel Pentium 4 Processor Optimization Contents

6-3 Using Prefetch Concatenation...........cccccoovviiiiiiieeeenisiiiieeeeeeenn 6-22
6-4 Concatenation and Unrolling the Last Iteration of Inner Loop ... 6-22
6-5 Spread Prefetch INStruCtioNSccevvevvieiiiiiee e 6-27
6-6 Data Access of a 3D Geometry Engine without Strip-mining 6-31
6-7 Data Access of a 3D Geometry Engine with Strip-mining 6-32
6-8 Basic Algorithm of a Simple Memory COpyccoooveevvvvvviiinnnnnnn. 6-39
6-9 An Optimized 8-byte Memory COpY.......ccueeieeriiiiiriiiiieee e 6-40
Figures

1-1 Typical SIMD OPEratiONS.......ccccoiiiiiiiieiiiiee e 1-2
1-2 SIMD Instruction Register Usagecccevvivieeiiiviieiiiiiiiieeeeeeeeenns 1-3
1-3 The Intel® NetBurst™ Micro-architectureccceceveeeveeneenee. 1-9
1-4 Execution Units and Ports in the Out-Of-Order Core 1-17
2-1 Cache Line Split in Accessing Elements in a Array................... 2-24
2-2 Size and Alignment Restrictions in Store Forwarding 2-26
3-1 Converting to Streaming SIMD Extensions Chart 3-7
3-2 Hand-Coded Assembly and High-Level Compiler

Performance Trade-0ffS............eueviiiiiiiiiiiii 3-11
3-3 Loop Blocking ACCeSS Pattern..........ccooviiiviiiiiieeiiiiiiiiieeee e 3-32
4-1 PACKSSDW mm, mm/mm64 Instruction Example..................... 4-8
4-2 Interleaved Pack with Saturationcccceeeeveveeieeeieeiieeieieeeeee, 4-8
4-3 Result of Non-Interleaved Unpack Low in MMOccc........ 4-11
4-4 Result of Non-Interleaved Unpack High in MM1 4-11
4-5 PEXIIW INSTIUCTIONiciceiie e e 4-13
4-6 PINSIW INSTIUCTION ...ttt 4-14
4-7 pmovmskb Instruction Example..........cccoooiiiiiiiiiiiiiiiiineeeeeeeeans 4-16
4-8 pshuf Instruction EXamplec.ooeviiiiiiiiiiiieeeee e 4-17
4-9 PSADBW Instruction EXamplecccccvvvviiiiiiiiiien e 4-29
5-1 Dot Product OPEration..........cuueveeeeeeiiiiiiieiee e 5-6
5-2 Horizontal Add Using movhlps/movihps........cccceiiiiiiiiiiennn. 5-16
6-1 Memory Access Latency and Execution Without Prefetch........ 6-18
6-2 Memory Access Latency and Execution With Prefetch............. 6-18
6-3 Prefetch and Loop UNrollingccoooiiiiiiiieieiniiieeeeece e 6-23

i ntel) Xvi

Intel Pentium 4 Processor Optimization Contents

6-4 Memory Access Latency and Execution With Prefetch............. 6-25
6-5 Cache Blocking — Temporally Adjacent and Non-adjacent

PSS .ttt 6-29
6-6 Examples of Prefetch and Strip-mining for Temporally

Adjacent and Non-Adjacent Passes LOOPSccoeevvevvvvvvnnnnnnn. 6-30
6-7 Incorporating Prefetch into Strip-mining Code...............cccoeeeee. 6-33
6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines................... 6-35

Tables

11 Pentium 4 Processor Cache Parameters........cccccccvvvvevienenene.n. 1-18
2-1 Known Performance Issues in the Pentium 4 Processor 2-2
5-1 SoA Form of Representing Vertices Data..........ccccccevvvviviennnenn. 5-5
6-1 Prefetch Implementation: Pentium Il and Pentium 4

PrOCESSOIS. ... e 6-7

intel ® Xvii

Intel Pentium 4 Processor Optimization Contents

inte|® Xviii

| ntroduction

The Intel® Pentium® 4 Processor Optimization Reference Manual describes how to
optimize software to take advantage of the performance characteristics of the newest
Intel Pentium 4 processor. The optimizations described for the Pentium 4 processor
will also apply to the future | A-32 processors based on the Intel® NetBurst™
micro-architecture.

The target audience for this manual includes software programmers and compiler
writers. This manual assumes that the reader is familiar with the basics of the 1A-32
architecture and has access to the three-volume set of manuals: Intel® Architecture
Software Developer’s Manual: Volume 1, Basic Architecture; Volume 2, Instruction
Sat Reference; and Volume 3, System Programmer’s Guide.

When devel oping and optimizing software applications to achieve a high level of
performance when running on | A-32 processors, a detailed understanding of 1A-32
family of processorsis often required; and in many cases, some level of knowledge on
the micro-architecture of the newest | A-32 processorsis also required.

This manual provides an overview of the Intel NetBurst micro-architecture, which is
implemented in the Intel Pentium 4 processor and future | A-32 processors. This
manual contains design guidelines for high-performance software applications, coding
rules, and techniques for many aspects of code-tuning. These rules and techniques not
only are useful to programmers, but are also applicable to compiler developers. This
manual aso includes instruction latency and throughput data for 1A-32 instructions
that pertains to the Pentium 4 processor.

The design guidelines that are discussed in this manual for developing
high-performance software apply to current aswell asto future | A-32 processors. Most
of the coding rules and code optimization techniques based on the Intel NetBurst
micro-architecture are also applicable to the P6 micro-architecture.

XXVii

Intel Pentium 4 Processor Optimization Introduction

Tuning Your Application

About

Tuning an application for high performance on any 1A-32 processor requires
understanding and basic skills in the following areas:

* thelA-32 architecture

* Cand Assembly language

* the hot-spot regions in your application that have significant impact on software
performance

* the optimization capabilities of your compiler

* techniques to evaluate the application’s performance.

The Intel VTune™ Performance Analyzer can help you analyze and locate any
hot-spot regionsin your applications. On the Pentium 11, Pentium IIl, and Pentium 4
processors, thistool can monitor your application through a selection of performance
monitoring events and analyze the performance event data that is gathered during code
execution. This manual also describes information that can be gathered using the
performance counters through Pentium 4 processor’s performance monitoring events.

For VTune Performance Analyzer order information, see the web page:
http://devel oper.intel.com

This Manual

The manual consists of the following parts:
Introduction. Defines the purpose and outlines the contents of this manual.

Chapter 1: Pentium 4 Processor Overview. This chapter describes the new features
of the Pentium 4 processor, including the architectural extensionsto the |A-32
architecture and an overview of the Intel NetBurst micro-architecture.

Chapter 2: General Optimization Guidelines. Describes general code devel opment
and optimization techniques that apply to all applications designed to take advantage
of the Intel NetBurst micro-architecture and high memory bandwidth.

XXviii

http://developer.intel.com

Intel Pentium 4 Processor Optimization Introduction

Chapter 3: Coding for SIMD Architectures. Describes techniques and concepts for
using the SIMD integer and SIMD floating-point instructions provided by the MM X ™
technology, Streaming SIMD Extensions, and Streaming SIMD Extensions 2.

Chapter 4: Optimizing for SIMD Integer Applications. Provides optimization
suggestions and common building blocks for applications that use the 64-bit and
128-hit SIMD integer instructions.

Chapter 5: Optimizing for SIMD Floating-point Applications. Provides
optimization suggestions and common building blocks for applications that use the
single-precision and double-precision SIMD floating-point instructions.

Chapter 6—Optimizing Cache Usage for Pentium 4 Processor s. Describes how to
use the pr ef et ch instruction and cache control management instructions to optimize
cache usage.

Appendix A—Application Performance Tools. Introduces several tools for
analyzing and enhancing application performance without having to write assembly
code.

Appendix B—Intel Pentium 4 Processor Performance Metrics. Provides a set of
useful information that can be gathered using Pentium 4 processor’s performance
monitoring events. These performance metrics can help programmers determine how
effectively an application is using the features of the Intel NetBurst micro-architecture.

Appendix C—IA-32 Instruction Latency and Throughput. Provides latency and
throughput data for the | A-32 instructions. These data are specific to the
implementation of the Pentium 4 processor.

Appendix D—Stack Alignment. Describes stack alignment conventions and
techniques to optimize performance of accessing stack-based data.

Appendix E—The Mathematics of Prefetch Scheduling Distance. Discusses the
optimum spacing to insert pr ef et ch instructions and presents a mathematical model
for determining the prefetch scheduling distance (PSD) for your application.

Related Documentation

For more information on the Intel architecture, specific techniques, and processor
architecture terminology referenced in this manual, see the following documentation:

n
I ntel ® XXiX

Intel Pentium 4 Processor Optimization Introduction

Intel® Architecture Optimization Reference Manual, Intel Corporation, doc.
number 245127

Pentium® Processor Family Developer’s Manual, Volumes 1, 2, and 3, doc.
numbers 241428, 241429, and 241430

Intel® C++ Compiler User’s Guide and Reference

Intel® Fortran Compiler User’s Guide and Reference

VTune™ Performance Analyzer online help

Intel® Architecture Software Developer’s Manual:

— Volume 1: Basic Architecture, doc. number 243190

— Volume 2: Instruction Set Reference Manual, doc. number 243191

— Volume 3: System Programmer’s Guide, doc. number 243192

Intel Processor Identification with the CPUID Instruction, doc. number 241618.

Notational Conventions

This manual uses the following conventions:
This type style Indicates an element of syntax, areserved word, a keyword,

afilename, instruction, computer output, or part of a
program example. The text appears in lowercase unless
uppercase is significant.

TH S TYPE STYLE Indicates a value, for example, TRUE, CONST1, or avariable,

for example, A, B, or register names Mvo through mvr.

| indicates|owercase letter L in examples. 1 isthe number 1
in examples. Oisthe uppercase O in examples. 0 isthe
number O in examples.

This type style Indicates a placeholder for an identifier, an expression, a
string, asymbol, or avalue. Substitute one of theseitemsfor
the placeholder.

. (ellipses) Indicate that afew lines of the code are omitted.

Thistype style Indicates a hypertext link.

intel.

XXX

Intel® Pentiunm® 4

Processor Overview 1

This chapter gives an overview of the key features of the Intel® Pentium® 4 processor.
This overview provides the background for understanding the coding
recommendations described in detail in later chapters.

The key features of the Pentium 4 processor that enabl e high-performance applications

are:

* Streaming SIMD Extensions 2 (SSE2) support

* Intel® NetBurst™ micro-architecture

* theimplementation parameters of the Intel NetBurst micro-architecture in the
Pentium 4 processor

The SSE2 is an architectural enhancement to the |A-32 architecture. The Intel
NetBurst micro-architecture is a new micro-architecture implemented in the Pentium 4
processor. The implementation parameters of the Intel NetBurst micro-architecturein
the Pentium 4 processor include:

* on-chip caches:
— 8 KByte high-speed first-level data cache
— 12K pop Execution Trace Cache (TC)
— 256 KByte unified 8-way second-level cache — Advanced Transfer Cache

* 400 MHz Intel NetBurst micro-architecture system bus, capable of delivering up to
3.2 GBytes per second of bandwidth.

In addition to the above, this chapter introduces single-instruction, multiple-data
(SIMD) technology. It also describes the theory of operation of the Pentium 4
processor with respect to the Intel NetBurst micro-architecture and the implementation
characteristics of the Pentium 4 processor.

1-1

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

SIMD Technology and Streaming SIMD Extensions 2

One way to increase processor performance is to execute several computationsin
parallel, so that multiple computations are done with a single instruction. The way to
achieve this type of parallel execution is to use the single-instruction, multiple-data
(SIMD) computation technique.

Figure 1-1 shows atypical SIMD computation. Here two sets of four packed data
elements (X1, X2, X3, and X4,and Y1, Y2, Y3, and Y4) are operated on in parald,
with the same operation being performed on each corresponding pair of data elements
(Xland Y1, X2 and Y2, X3 and Y 3, and X4 and Y 4). The results of the four parallel
computations are sorted as a set of four packed data elements.

Figure 1-1 Typical SIMD Operations

X4 X3 X2 X1
Y4 Y3 Y2 Y1
X4opY4 X3o0pY3 X20pY2 XlopY1l

SIMD computations like those shown in Figure 1-1 were introduced into the 1A-32
architecture with the MM X™ technology. The MM X technology allows SIMD
computations to be performed on packed byte, word, and doubleword integers that are
contained in a set of eight 64-bit registers called MM X registers (see Figure 1-2).

1-2

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Figure 1-2 SIMD Instruction Register Usage

64-bit MM X Registers 128-bit XMM Registers
MM7 XMM7
MM6 XMM6
MM5 XMM5
MM4 XMM4
MM3 XMM3
MM2 XMM2
MM1 XMM1
MMO XMMO

The Pentium 1l processor extended thisinitial SIMD computation model with the
introduction of the Streaming SIMD Extensions (SSE). The Streaming SIMD
Extensions alow SIMD computations to be performed on operands that contain four
packed single-precision floating-point data elements. The operands can be either in
memory or in aset of eight 128-bit registers called the XMM registers (see Figure 1-2).
The SSE also extended SIMD computational capability with additional 64-bit MM X
instructions.

The Pentium 4 processor further extends the SIMD computation model with the
introduction of the Streaming SIMD Extensions 2 (SSE2). The SSE2 also work with
operands in either memory or in the XMM registers. The SSE2 extends SIMD
computations to process packed double-precision floating-point data elements and
128-bit packed integers. There are 144 instructionsin the SSE2 that can operate on two
packed double-precision floating-point data elements, or on 16 packed byte, 8 packed
word, 4 doubleword, and 2 quadword integers.

Thefull set of IA-32 SIMD technologies (MM X technology, SSE, and SSE2) givesthe
programmer the ability to develop algorithms that can combine operations on packed
64- and 128-bit integer and single and double-precision floating-point operands.

1-3

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

This SIMD capability improves the performance of 3D graphics, speech recognition,
image processing, scientific, and other multimedia applications that have the following
characteristics:

* inherently parallel

* regular and recurring memory access patterns

* localized recurring operations performed on the data
* data-independent control flow.

The lA-32 SIMD floating-point instructions fully support the IEEE Standard 754 for
Binary Floating-Point Arithmetic. All SIMD instructions are accessible from all 1A-32
execution modes: protected mode, real address mode, and Virtual 8086 mode.

The SSE2, SSE, and MM X technology are architectural extensionsin the |A-32 Intel®
architecture. All existing software continues to run correctly, without modification, on
I A-32 microprocessors that incorporate these technologies. Existing software also runs
correctly in the presence of new applications that incorporate these SIMD
technologies.

The SSE and SSE2 instruction sets also introduced a set of cacheability and memory
ordering instructions that can improve cache usage and application performance.

For more information on SSE2 instructions, including the cacheability and memory
operation instructions, refer to the 1A-32 Intel® Architecture Software Developer’s
Manual, Volume 1, Chapter 11 and Volume 2, Chapter 3 which are available at
http://devel oper.intel.com/design/pentium4/manual s/index.htm.

Summary of SIMD Technologies

The paragraphs below summarize the new features of the three SIMD technologies
(MMX technology, SSE, and SSE?2) that have been added to the IA-32 architecture in
chronological order.

MMX Technology
* Introduces 64-bit MMX registers.

* Introduces support for SIMD operations on packed byte, word, and doubleword
integers.

intel.

1-4

http://developer.intel.com/design/processor/future/manuals/index.htm

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

The MM X instructions are useful for multimedia and communi cations software.

For more information on the MM X technology, refer to the IA-32 Intel® Architecture
Software Developer’s Manual, Volume 1, available at
http://devel oper.intel.com/design/pentium4/manual s/index.htm.

Streaming SIMD Extensions
* Introduces 128-hit XMM registers.

* Introduces 128-bit data type with four packed single-precision floating-point
operands.

* Introduces data prefetch instructions.

* Introduces non-temporal store instructions and other cacheability and memory
ordering instructions.

* Adds extra64-bit SIMD integer support.

The SSE instructions are useful for 3D geometry, 3D rendering, speech recognition,
and video encoding and decoding.

For more information on the Streaming SIMD Extensions, refer to the 1A-32 Intel®
Architecture Software Developer’s Manual, Volume 1, available at
http://devel oper.intel.com/desi gn/penti um4/manual s/index.htm.

Streaming SIMD Extensions 2
* Adds 128-bit data type with two packed double-precision floating-point operands.

* Adds 128-bit datatypes for SIMD integer operation on 16-byte, 8-word,
4-doubleword, or 2-quadword integers.

* Adds support for SIMD arithmetic on 64-bit integer operands.

* Addsinstructions for converting between new and existing data types.
* Extends support for data shuffling.

* Extends support for cacheability and memory ordering operations.

The SSE2 instructions are useful for 3D graphics, video decoding/encoding, and
encryption.

1-5

http://developer.intel.com/design/processor/future/manuals/index.htm
http://developer.intel.com/design/processor/future/manuals/index.htm

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Intel®

For more information, refer to the 1A-32 Intel® Architecture Software Devel oper’s
Manual, Volume 1, available at
http://devel oper.intel.com/desi gn/pentium4/manual s/index.htm.

NetBurst™ Micro-architecture

The Pentium 4 processor is the first hardware implementation of a new
micro-architecture, the Intel NetBurst micro-architecture. This section describes the
key features of the Intel NetBurst micro-architecture and the details of its operation
based on its implementation by the Pentium 4 processor. Additional Pentium 4
processor specific operational details, including instruction latencies, are given in
“1A-32 Instruction Latency and Throughput” in Appendix C. Theinformation in this
section provides the technical background to understand the optimization
recommendations and coding rules that are discussed in Chapter 2 and the rest of this
manual.

The Intel NetBurst micro-architecture is designed to achieve high performance for
both integer and floating-point computations at very high clock rates. It supports the
following features:

* hyper pipelined technology to enable high clock rates and frequency headroom to
well above 1 GHz

* rapid execution engine to reduce the latency of basic integer instructions

* high-performance, quad-pumped bus interface to the 400 MHz Intel NetBurst
micro-architecture system bus.

* rapid execution engine to reduce the latency of basic integer instructions
* out-of-order speculative execution to enable parallelism

® superscalar issueto enable parallelism

* hardware register renaming to avoid register name space limitations

* cacheline sizes of 64 and 128 bytes

* hardware prefetch

* high-performance, quad-pumped bus interface to the Intel NetBurst
micro-architecture system bus.

1-6

http://developer.intel.com/design/processor/future/manuals/index.htm

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Overview 1

The Design Considerations of the Intel NetBurst Micro-architecture

The design goals of Intel NetBurst micro-architecture are: (a) to execute both the
legacy | A-32 code and applications based on single-instruction, multiple-data (SIMD)
technology at high processing rates; (b) to operate at high clock rates, and to scale to
higher performance and clock ratesin the future. To accomplish these design goals, the
Intel NetBurst micro-architecture has many advanced features and improvements over
the P6 micro-architecture.

To enable high performance and highly scalable clock rates, the major design
considerations of the Intel NetBurst micro-architecture are as follows:

It uses a deeply pipelined design to enable high clock rates with different parts of
the chip running at different clock rates, some faster and some slower than the
nominally-quoted clock frequency of the processor. The Intel NetBurst
micro-architecture allows the Pentium 4 processor to achieve significantly higher
clock rates as compared with the Pentium 1l processor. These clock rates will
achieve well above 1 GHz.

Its pipeline provides high performance by optimizing for the common case of
frequently executed instructions. This means that the most frequently-executed
instructions in common circumstances (such as a cache hit) are decoded efficiently
and executed with short latencies, such that frequently encountered code sequences
are processed with high throughput.

It employs many techniques to hide stall penalties. Among these are parallel
execution, buffering, and speculation. Furthermore, the Intel NetBurst
micro-architecture executes instructions dynamically and out-or-order, so the time
it takes to execute each individual instruction is not always deterministic.
Performance of a particular code sequence may vary depending on the state the
machine was in when that code sequence was entered.

Because of the complexity and subtlety of the Intel NetBurst micro-architecture,
Chapter 2 of this document recommends what optimizations to use and what situations
to avoid, and gives a sense of relative priority, but typically it does not absolutely
guantify expected benefits and penalties. While this was more feasible with earlier
in-order micro-architectures, thisis no longer possible.

The following sections provide detailed description of the Intel NetBurst
micro-architecture.

1-7

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Overview of the Intel NetBurst Micro-architecture Pipeline

The pipeline of the Intel NetBurst micro-architecture contain three sections:
* thein-order issue front end

* the out-of-order superscalar execution core

* thein-order retirement unit.

The front end supplies instructions in program order to the out-of-order core. It fetches
and decodes 1A-32 instructions. The decoded 1A-32 instructions are translated into
pops. The front end’s primary job is to feed a continuous stream of popsto the
execution core in original program order.

The core can then issue multiple pops per cycle, and aggressively reorder pops so that
those pops, whose inputs are ready and have execution resources available, can
execute as soon as possible. The retirement section ensures that the results of execution
of the pops are processed according to original program order and that the proper
architectural states are updated.

Figure 1-3 illustrates a block diagram view of the major functional units associated
with the Intel NetBurst micro-architecture pipeline. The subsections that follow
Figure 1-3 provide an overview of each of the three sectionsin the pipeline.

1-8

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Figure 1-3 The Intel® NetBurst™ Micro-architecture

System Bus

4 T d =P Frequently used paths

\ 4

—--—-& Less frequently used paths

Bus Unit

I
| 3rd Level Cache I
I Optional, Server Product Only |

2nd Level Cache & 1st Level Cache
8-Way 4-way
' Front End $
v

. Trace Cache Execution :
Fetch/Decode M Microcode ROM _-> Out-Of-Order Core _> Retirement

? 4

Branch History Update

BTBs/Branch Prediction o

The Front End

The front end of the Intel NetBurst micro-architecture consists of two parts:
¢ fetch/decode unit

® execution trace cache.

The front end performs several basic functions:

* prefetches|A-32 instructions that are likely to be executed

¢ fetchesinstructions that have not aready been prefetched

intel. 19

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

* decodes instructions into micro-operations

* generates microcode for complex instructions and special-purpose code
* deliversdecoded instructions from the execution trace cache

* predicts branches using highly advanced algorithm.

The front end of the Intel NetBurst micro-architecture is designed to address some of
the common problems in high-speed, pipelined microprocessors. Two of these
problems contribute to major sources of delays:

* thetimeto decode instructions fetched from the target

¢ wasted decode bandwidth due to branches or branch target in the middle of cache
lines.

The execution trace cache addresses both of these problems by storing decoded 1A-32
instructions. Instructions are fetched and decoded by a translation engine. The
translation engine builds the decoded instruction into sequences of pops called traces,
which are stored in the trace cache. The execution trace cache stores these micro-opsin
the path of program execution flow, where the results of branches in the code are
integrated into the same cache line. This increases the instruction flow from the cache
and makes better use of the overall cache storage space since the cache no longer
stores instructions that are branched over and never executed. The trace cache can
deliver up to 3 pops per clock to the core.

The execution trace cache and the translation engine have cooperating branch
prediction hardware. Branch targets are predicted based on their linear address using
branch prediction logic and fetched as soon as possible. Branch targets are fetched
from the execution trace cache if they are cached there, otherwise they are fetched
from the memory hierarchy. The trand ation engine’s branch prediction information is
used to form traces along the most likely paths.

The Out-of-order Core

The core’s ability to execute instructions out of order is akey factor in enabling
parallelism. Thisfeature enables the processor to reorder instructions so that if one pop
is delayed while waiting for data or a contended resource, other pops that appear later
in the program order may proceed around it. The processor employs several buffersto
smooth the flow of pops. Thisimplies that when one portion of the entire processor

1-10

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

pipeline experiences a delay, that delay may be covered by other operations executing
in paralel (for example, in the core) or by the execution of pops which were
previously queued up in a buffer (for example, in the front end).

The delays described in this chapter must be understood in this context. The coreis
designed to facilitate parallel execution. It can dispatch up to six pops per cycle
through the issue ports pictured in Figure 1-4, page 1-17. Note that six pops per cycle
exceeds the trace cache and retirement pop bandwidth. The higher bandwidth in the
core allows for peak bursts of greater than 3 pops and to achieve higher issue rates by
allowing greater flexibility in issuing pops to different execution ports.

Most execution units can start executing a new LLop every cycle, so that several
instructions can be in flight at atime for each pipeline. A number of arithmetic logica
unit (ALU) instructions can start two per cycle, and many floating-point instructions
can start one every two cycles. Finally, pops can begin execution, out of order, as soon
as their data inputs are ready and resources are available.

Retirement

The retirement section receives the results of the executed pops from the execution
core and processes the results so that the proper architectural stateis updated according
to the original program order. For semantically-correct execution, the results of 1A-32
instructions must be committed in original program order beforeit isretired.
Exceptions may be raised as instructions are retired. Thus, exceptions cannot occur
speculatively, they occur in the correct order, and the machine can be correctly
restarted after an exception.

When a pop completes and writes its result to the destination, it is retired. Up to three
pops may be retired per cycle. The Reorder Buffer (ROB) is the unit in the processor
which buffers completed pops, updates the architectural state in order, and manages
the ordering of exceptions.

The retirement section also keeps track of branches and sends updated branch target
information to the branch target buffer (BTB) to update branch history. Figure 1-3
illustrates the paths that are most frequently executing inside the Intel NetBurst
micro-arachitecture: an execution loop that interacts with multi-level cache hierarchy
and the system bus.

1-11

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

The following sections describe in more detail the operation of the front end and the
execution core. These detailed information of the Intel NetBurst micro-architecture
provides the background for understanding the optimization techniques and using the
instruction latency data that are documented in this manual.

Front End Pipeline Detail

The following information about the front end operation may be useful for tuning
software with respect to prefetching, branch prediction, and execution trace cache
operations.

Prefetching

The Intel NetBurst micro-architecture supports three prefetching mechanisms:
e thefirstisfor instructions only

* thesecondisfor dataonly

* thethirdisfor code or data.

The first mechanism is hardware instruction fetcher that automatically prefetches
instructions. The second is a software-controlled mechanism that fetches data into the
caches using the prefetch instructions. The third is a hardware mechanism that
automatically fetches data and instructions into the unified second-level cache.

The hardware instruction fetcher reads instructions along the path predicted by the
BTB into the instruction streaming buffers. Datais read in 32-byte chunks starting at
the target address. The second and third mechanisms will be described | ater.

Decoder

The front end of the Intel NetBurst micro-architecture has a single decoder that can
decode instructions at the maximum rate of one instruction per clock. Some complex
instructions must enlist the help of the microcode ROM. The decoder operation is
connected to the execution trace cache discussed in the section that follows.

1-12

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Execution Trace Cache

The execution trace cache (TC) isthe primary instruction cache in the Intel NetBurst
micro-architecture. The TC stores decoded |A-32 instructions, or pops. This removes
decoding costs on frequently-executed code, such astemplate restrictions and the extra
latency to decode instructions upon a branch misprediction.

In the Pentium 4 processor implementation, the TC can hold up to 12K pops and can
deliver up to three pops per cycle. The TC does not hold all of the pops that need to be
executed in the execution core. In some situations, the execution core may need to
execute a microcode flow, instead of the pop traces that are stored in the trace cache.

The Pentium 4 processor is optimized so that most frequently-executed | A-32
instructions come from the trace cache, efficiently and continuously, while only afew
instructions involve the microcode ROM.

Branch Prediction

Branch prediction is very important to the performance of a deeply pipelined
processor. Branch prediction enables the processor to begin executing instructionslong
before the branch outcomeis certain. Branch delay is the penalty that isincurred in the
absence of a correct prediction. For Pentium 4 processor, the branch delay for a
correctly predicted instruction can be as few as zero clock cycles. The branch delay for
amispredicted branch can be many cycles; typically thisis equivalent to the depth of
the pipeline.

The branch prediction in the Intel NetBurst micro-architecture predicts all near
branches, including conditional, unconditional calls and returns, and indirect branches.
It does not predict far transfers, for example, far calls, irets, and software interrupts.

In addition, severa mechanisms are implemented to aid in predicting branches more
accurately and in reducing the cost of taken branches:

* dynamically predict the direction and target of branches based on the instructions’
linear address using the branch target buffer (BTB)

* if nodynamic prediction isavailable or if it isinvalid, statically predict the
outcome based on the offset of the target: a backward branch is predicted to be
taken, aforward branch is predicted to be not taken

* return addresses are predicted using the 16-entry return address stack

"Ttel ® 1-13

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

* tracesof instructions are built across predicted taken branchesto avoid branch
penalties.

The Satic Predictor. Once the branch instruction is decoded, the direction of the
branch (forward or backward) is known. If there was no valid entry in the BTB for the
branch, the static predictor makes a prediction based on the direction of the branch.
The static prediction mechanism predicts backward conditional branches (those with
negative displacement), such asloop-closing branches, as taken. Forward branches are
predicted not taken.

To take advantage of the forward-not-taken and backward-taken static predictions, the
code should be arranged so that the likely target of the branch immediately follows
forward branches. See examples on branch prediction in “Branch Prediction” in
Chapter 2.

Branch Target Buffer. Once branch history is available, the Pentium 4 processor can
predict the branch outcome before the branch instruction is even decoded, based on a
history of previously-encountered branches. It uses a branch history table and abranch
target buffer (collectively called the BTB) to predict the direction and target of
branches based on an instruction’s linear address. Once the branch isretired, the BTB
is updated with the target address.

Return Sack. Returns are always taken, but since a procedure may be invoked from
several call sites, asingle predicted target will not suffice. The Pentium 4 processor has
aReturn Stack that can predict return addresses for a series of procedure calls. This
increases the benefit of unrolling loops containing function calls. It also mitigates the
need to put certain procedures inline since the return penalty portion of the procedure
call overhead is reduced.

Even if the direction and target address of the branch are correctly predicted well in
advance, a taken branch may reduce available parallelism in atypical processor, since
the decode bandwidth is wasted for instructions which immediately follow the branch
and precede the target, if the branch does not end the line and target does not begin the
line. The branch predictor allows a branch and its target to coexist in asingle trace
cache line, maximizing instruction delivery from the front end.

1-14

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Branch Hints

The Pentium 4 processor provides a feature that permits software to provide hints to
the branch prediction and trace formation hardware to enhance their performance.
These hints take the form of prefixesto conditional branch instructions. These prefixes
have no effect for pre-Pentium 4 processor implementations. Branch hints are not
guaranteed to have any effect, and their function may vary across implementations.
However, since branch hints are architecturally visible, and the same code could be run
on multiple implementations, they should be inserted only in cases which are likely to
be helpful across all implementations.

Branch hints are interpreted by the translation engine, and are used to assist branch
prediction and trace construction hardware. They are only used at trace build time, and
have no effect within already-built traces. Directional hints override the static
(forward-not-taken, backward-taken) prediction in the event that aBTB prediction is
not available. Because branch hints increase code size slightly, the preferred approach
to providing directional hintsis by the arrangement of code so that

¢ forward branches that are more probable should be in the not-taken path, and

* backward branches that are more probable should be in the taken path. Since the
branch prediction information that is available when the trace is built is used to
predict which path or trace through the code will be taken, directional branch hints
can help traces be built aong the most likely path. See “Branch Hints” in Chapter
2 for branch hint coding recommendations.

Execution Core Detail

The execution core is designed to optimize overall performance by handling the most
common cases most efficiently. The hardware is designed to execute the most frequent
operations in the most common context as fast as possible, at the expense of
less-frequent operations in rare context. Some parts of the core may speculate that a
common condition holds to alow faster execution. If it does not, the machine may
stall. An example of this pertains to store forwarding, see “ Store Forwarding” later in
this chapter. If aload is predicted to be dependent on a store, it gets its data from that
store and tentatively proceeds. If the load turned out not to depend on the store, the
load is delayed until the real data has been loaded from memory, then it proceeds.

1-15

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Instruction Latency and Throughput

The superscalar, out-of-order core contains multiple execution hardware resources that
can execute multiple popsin parallel. The core’s ability to make use of available
parallelism can be enhanced by:

* selecting IA-32 instructions that can be decoded into less than 4 pops and/or have
short latencies

e ordering |A-32 instructions to preserve available parallelism by minimizing long
dependence chains and covering long instruction latencies

* ordering instructions so that their operands are ready and their corresponding issue
ports and execution units are free when they reach the scheduler.

This subsection describes port restrictions, result latencies, and issue latencies (also
referred to as throughput) that form the basis for that ordering. Scheduling affects the
way that instructions are presented to the core of the processor, but it is the execution
core that reacts to an ever-changing machine state, reordering instructions for faster
execution or delaying them because of dependence and resource constraints. Thus the
ordering of instructionsis more of a suggestion to the hardware.

“1A-32 Instruction Latency and Throughput” in Appendix C, liststhe |A-32
instructions with their latency, their issue throughput, and in relevant cases, the
associated execution units. Some execution units are not pipelined, such that pops
cannot be dispatched in consecutive cycles and the throughput is less than one per
cycle.

The number of pops associated with each instruction provides a basis for selecting
which instructions to generate. In particular, pops which are executed out of the
microcode ROM, involve extra overhead. For the Pentium Il and Pentium Ill
processors, optimizing the performance of the decoder, which includes paying
attention to the 4-1-1 sequence (instruction with four pops followed by two
instructions each with one pop) and taking into account the number of pops for each
IA-32 instruction, was very important. On the Pentium 4 processor, the decoder
template is not an issue. Thereforeit is no longer necessary to use a detailed list of
exact pop count for 1A-32 instructions. Commonly used 1A-32 instruction which
consists of four or less pops are shownin “1A-32 Instruction L atency and Throughput”
in Appendix C, with information on what execution units are associated with these
instructions.

1-16

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Execution Units and Issue Ports

Each cycle, the core may dispatch pops to one or more of the four issue ports. At the
micro-architectural level, store operations are further divided into two parts: store data
and store address operations. The four ports through which pops are dispatched to
various execution units and to perform load and store operations are shown in

Figure 1-4. Some ports can dispatch two pops per clock because the execution unit for
that pop executes at twice the speed, and those execution units are marked “Double

speed.”

Figure 1-4 Execution Units and Ports in the Out-Of-Order Core

¥ ¥ v v v

Integer
ALU 1 :
Q(I)_uLlil(e) FP Move Double Operation FP Memory Memory
speed speed Normal Execute Load Store
speed
ADQ/SUB FP Move ADD/SUB Shift/Rotate FP_ADD All Loads Store
Logic FP Store Data FP MUL LEA Address
Store Data FXCH FP DIV Prefetch
Branches FP_MISC
MMX_SHFT
MMX_ALU
MMX_MISC
Note:

FP_ADD refers to x87 FP, and SIMD FP add and subtract operations
FP_MUL refers to x87 FP, and SIMD FP multiply operations

FP_DIV refers to x87 FP, and SIMD FP divide and square-root operations
MMX_ALU refers to SIMD integer arithmetic and logic operations
MMX_SHFT handles Shift, Rotate, Shuffle, Pack and Unpack operations
MMX_MISC handles SIMD reciprocal and some integer operations

Port 0. Inthefirst half of the cycle, port O can dispatch either one floating-point move
pop (including floating-point stack move, floating-point exchange or floating-point
store data), or one arithmetic logical unit (ALU) pop (including arithmetic, logic or
store data). In the second half of the cycle, it can dispatch one similar ALU pop.

tel ® 1-17

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

Port 1. In thefirst half of the cycle, port 1 can dispatch either one floating-point
execution (all floating-point operations except moves, al SIMD operations) pop or
normal-speed integer (multiply, shift and rotate) pop, or one ALU (arithmetic, logic or
branch) pop. In the second half of the cycle, it can dispatch one similar ALU pop.

Port 2. Port 2 supports the dispatch of one load operation per cycle.
Port 3. Port 3 supports the dispatch of one store address operation per cycle.

Thus the total issue bandwidth can range from zero to six pops per cycle. Each
pipeline contains several execution units. The pops are dispatched to the pipeline that
corresponds to its type of operation. For example, an integer arithmetic logic unit and
the floating-point execution units (adder, multiplier, and divider) share a pipeline.

Caches

The Intel NetBurst micro-architecture can support up to three levels of on-chip cache.
Only two levels of on-chip caches are implemented in the Pentium 4 processor, which
isaproduct for the desktop environment. The level nearest to the execution core of the
processor, thefirst level, contains separate caches for instructions and data: afirst-level
data cache and the trace cache, which is an advanced first-level instruction cache. All
other levels of caches are shared. The levelsin the cache hierarchy are not inclusive,
that is, thefact that alineisin level i does not imply that itisalsoin level i+1. All
caches use a pseudo-LRU (least recently used) replacement algorithm. Table 1-1
provides the parameters for all cache levels.

Table 1-1 Pentium 4 Processor Cache Parameters
Access Latency,
Associativity Line Size Integer/floating-point
Level Capacity (ways) (bytes) (clocks) Write Update Policy
First 8KB 4 64 2/6 write through
TC 12K pops 8 N/A N/A N/A
Second 256KB 8 1281 717 write back

1 Two sectors per line, 64 bytes per sector

A second-level cache missinitiates a transaction across the system bus interface to the
memory sub-system. The system bus interface supports using a scalable bus clock and
achieves an effective speed that quadrupl es the speed of the scalable bus clock. It takes

intel.

1-18

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

on the order of 12 processor cyclesto get to the bus and back within the processor, and
6-12 bus cycles to access memory if there is no bus congestion. Each bus cycle equals
several processor cycles. Theratio of processor clock speed to the scalable bus clock
speed isreferred to asbusratio. For example, one bus cyclefor a100 MHz busisequal
to 15 processor cycleson a 1.50 GHz processor. Since the speed of the busis
implementation- dependent, consult the specifications of a given system for further
details.

Data Prefetch

The Pentium 4 processor has two mechanisms for prefetching data: a software-
controlled prefetch and an automatic hardware prefetch.

Softwar e-controlled prefetch is enabled using the four prefetch instructions
introduced with Streaming SIMD Extensions (SSE) instructions. These instructions
are hints to bring a cache line of datainto the desired levels of the cache hierarchy. The
software-controlled prefetch is not intended for prefetching code. Using it can incur
significant penalties on a multiprocessor system where code is shared.

Software-controlled data prefetch can provide optimal benefits in some situations, and
may not be beneficial in other situations. The situations that can benefit from
software-controlled data prefetch are the following:

* when the pattern of memory access operations in software allows the programmer
to hide memory latency

* when areasonable choice can be made of how many cache lines to fetch ahead of
the current line being executed

* when an appropriate choice is made for the type of prefetch used. The four types of
prefetches have different behaviors, both in terms of which cache levels are
updated and the performance characteristics for a given processor implementation.
For instance, a processor may implement the non-temporal prefetch by only
returning data to the cache level closest to the processor core. This approach can
have the following effects:

a) minimizing disturbance of temporal datain other cache levels

b) avoiding the need to access off-chip caches, which can increase the realized
bandwidth compared to a normal load-miss, which returns datato all cache levels.

"Ttel ® 1-19

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

The situations that are less likely to benefit from software-controlled data prefetch are
the following:

* |ncasesthat are already bandwidth bound, prefetching tends to increase bandwidth
demands, and thus not be effective.

* Prefetching too far ahead may cause eviction of cached data from the caches prior
to actually being used in execution; not prefetching far enough ahead can reduce
the ability to overlap memory and execution latencies.

* When the prefetch can only be usefully placed in locations where the likelihood of
that prefetch’s getting used is low. Prefetches consume resources in the processor
and the use of too many prefetches can limit their effectiveness. Examples of this
include prefetching datain aloop for areference outside the loop, and prefetching
in abasic block that is frequently executed, but which seldom precedes the
reference for which the prefetch is targeted.

For more details on software prefetching see Chapter 6, “Optimizing Cache Usage for
Intel Pentium 4 Processors’.

Automatic hardware prefetch isanew feature in the Pentium 4 processor. It can
bring cache lines into the unified second-level cache based on prior reference patterns.
For more details on the automatic hardware prefetcher, see Chapter 6, “ Optimizing
Cache Usagefor Intel Pentium 4 Processors’.

Pros and Cons of Software and Hardwar e Prefetching. Software prefetching has
the following characteristics:

* Handlesirregular access patterns, which would not trigger the hardware prefetcher

* Handles prefetching of short arrays and avoids hardware prefetching’s start-up
delay before initiating the fetches

* Must be added to new code; does not benefit existing applications.

In comparison, hardware prefetching for Pentium 4 processor has the following
characteristics:

* Works with existing applications
* Requires regular access patterns

1-20

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

* Hasastart-up penalty before the hardware prefetcher triggers and beginsinitiating
fetches. This has alarger effect for short arrays when hardware prefetching
generates arequest for data beyond the end of an array, which is not actually
utilized. However, software prefetching can recognize and handle these cases by
using fetch bandwidth to hide the latency for theinitial datain the next array. The
penalty diminishesif it is amortized over longer arrays.

* Avoidsinstruction and issue port bandwidth overhead.

Loads and Stores

The Pentium 4 processor employs the following techniques to speed up the execution
of memory operations:

* gpeculative execution of loads

* reordering of loads with respect to loads and stores
* multiple outstanding misses

* buffering of writes

¢ forwarding of datafrom stores to dependent loads.

Performance may be enhanced by not exceeding the memory issue bandwidth and
buffer resources provided by the machine. Up to one load and one store may be issued
each cycle from the memory port’s reservation stations. In order to be dispatched to the
reservation stations, there must be a buffer entry available for that memory operation.
There are 48 load buffers and 24 store buffers. These buffers hold the pop and address
information until the operation is completed, retired, and deall ocated.

The Pentium 4 processor is designed to enable the execution of memory operations out
of order with respect to other instructions and with respect to each other. Loads can be
carried out speculatively, that is, before all preceding branches are resolved. However,
specul ative loads cannot cause page faults. Reordering loads with respect to each other
can prevent aload missfrom stalling later |loads. Reordering loads with respect to other
loads and stores to different addresses can enable more parallelism, allowing the
machine to execute more operations as soon as their inputs are ready. Writes to
memory are aways carried out in program order to maintain program correctness.

1-21

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Overview 1

A cache missfor aload does not prevent other loads from issuing and completing. The
Pentium 4 processor supports up to four outstanding load misses that can be serviced
either by on-chip caches or by memory.

Store buffers improve performance by allowing the processor to continue executing
instructions without having to wait until awrite to memory and/or cache is complete.
Writes are generally not on the critical path for dependence chains, so it is often
beneficial to delay writes for more efficient use of memory-access bus cycles.

Store Forwarding

L oads can be moved before stores that occurred earlier in the program if they are not
predicted to load from the same linear address. If they do read from the same linear
address, they have to wait for the store’s datato become available. However, with store
forwarding, they do not have to wait for the store to write to the memory hierarchy and
retire. The data from the store can be forwarded directly to the load, aslong as the
following conditions are met:

* Sequence: The datato be forwarded to the load has been generated by a
programmatically-earlier store, which has aready executed.

* Size: the bytes loaded must be a subset of (including a proper subset, that is, the
same) bytes stored.

* Alignment: the store cannot wrap around a cache line boundary, and the linear
address of the load must be the same as that of the store.

intel ® 1-22

General Optimization
Guidelines

2

This chapter discusses genera optimization techniques that can improve the

performance of applications running on the Intel Pentium 4 processor. These
techniques take advantage of the microarchitectural features of the Pentium 4
processor described in Chapter 1, “Intel® Pentium® 4 Processor Overview”.

This chapter explains the optimization techniques both for those who use the

Intel® C++ or Fortran Compiler and for those who use other compilers. The Intel
compiler, which is specifically tuned for the Pentium 4 processor, provides the most of
the optimization. For those not using the Intel C++ or Fortran Compiler, the assembly
code tuning optimizations may be useful. The explanations are supported by coding
examples.

Tuning to Achieve Optimum Performance

The most important factors in achieving optimum processor performance are:
* good branch prediction

* avoiding memory access stalls

* good floating-point performance

® instruction selection, including use of SIMD instructions

* instruction scheduling (to maximize trace cache bandwidth)

* vectorization.

The following sections describe important practices, tools, coding rules and

recommendations associated with these factors that will aid in optimizing the
performance on 1A-32 processors.

2-1

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Tuning to Prevent Known Coding Pitfalls

To produce program code that takes advantage of the strengths of the Intel NetBurst
micro-architecture (as summarized in the previous section), performance tuning
requires avoiding coding pitfalls that limit the performance of the target processor.
This section lists several known coding pitfalls that could limit the performance of the
Pentium 4 processor. Some of the coding pitfalls, such as the store-forwarding cases,
also limit performance on Pentium Il processors. This chapter provides
recommendations and coding rules that help avoid them.

Table 2-1 lists several known coding pitfalls that cause performance degradation in
Pentium 4 processors. This table should be used as a check list for establishing a
performance-tuning baseline for the Pentium 4 processor. For every issue, Table 2-1
provides areference to a section in this document, which describesin detail the causes
of performance penalties and presents code examples, coding rules, and recommended
solutions. Note that “aligned” here means that the address of the load is aligned with
respect to the address of the store..

Table 2-1 Factors Affecting Performance in the Pentium 4 Processor
Example (if
Factors Affecting Performance Symptom applicable) Section Reference
Small, unaligned | oad after large Store-forwarding Example 2-10 Store Forwarding,
store blocked Store-forwarding
Restriction on Size and
Alignment
Large | oad after small st or e; Store-forwarding Example 2-11, Store Forwarding,
Load dwor d after st or e dwor d, blocked Example 2-12 Store-forwarding
store byte; Restriction on Size and
Load dwor d, ANDwith Oxf f after Allgnment
st or e byte
Cache line splits Access across Example 2-9 Align data on natural
cache line boundary operand size address
boundaries
Integer shift and multiply latency Longer latency than Use of the shift and
Pentium 111 rotate Instructions,
processor Integer and

Floating-point Multiply

continued

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Table 2-1 Factors Affecting Performance in the Pentium 4 Processor (continued)

Example (if
Factors Affecting Performance Symptom applicable) Section Reference
Denormal inputs and outputs Slows x87, SSE*, Floating-point Exceptions
SSE2** floating-
point operations
Cycling more than 2 values of f1 dcwnot Floating-point Modes

Floating-point Control Word optimized

* Streaming SIMD Extensions (SSE)
** Streaming SIMD Extensions 2 (SSE2)

General Practices and Coding Guidelines

This section discusses the general guidelines that derive from the optimum
performance factorslisted in “ Tuning to Achieve Optimum Performance.” It also
highlights key practices of using the performance tools.

Thefollowing is asummary of key practices of performance tools usage and general
coding guidelines. Each heading is discussed in detail in subsequent sectionsin this
chapter. The coding practices recommended under each heading and the bullets under
each heading are listed in order of importance.

Use Available Performance Tools

* Current-generation compiler, such asthe Intel C++ Compiler:
— Set this compiler to produce code for the target processor implementation

— Use the compiler switches for optimization and/or profile-guided
optimization. These features are summarized in “Intel ® C++ Compiler” and,
in more detail, in the Intel C++ Compiler User’s Guide and Reference.

* Current-generation performance monitoring tools, such as VTune™ Performance
Anayzer:

— ldentify performance issues, use event-based sampling, code coach and other
analysis resource

— Characterize performance gain.

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Optimize Performance Across Processor Generations
* Usecpui d dispatch strategy to deliver optimum performance for all processor
generations.

* Use compatible code strategy to deliver optimum performance for Pentium 4
processor and future 1A-32 processors.

Optimize Branch Predictability

* Improve branch predictability and optimize instruction prefetching by arranging
code to be consistent with the static branch prediction assumptions: backward
taken and forward not taken.

* Avoid mixing near and far calls and returns.

* Avoid implementing acall by pushing the return address and jumping to the target.
The hardware can pair up call and return instructions to enhance predictability.

* Usethe pause instruction in spin-wait loops.

* Inline functions according to coding recommendations.
* Eliminate branches.

* Avoidindirect calls.

Optimize Memory Access

* Observe store-forwarding constraints.

* Ensure proper data alignment to prevent data split across cache line. boundary.
Thisincludes stack and passing parameters.

* Avoid mixing code and data (self-modifying code).
* Choose data types carefully (see next bullet below) and avoid type casting.

* Employ data structure layout optimization to ensure efficient use of longer
Pentium 4 processor cache lines.

* Use prefetching appropriately.
* Minimize use of global variables and pointers.
* Usetheconst modifier; usethest at i ¢ modifier for global variables.

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Use the following techniques to enhance locality: blocking, loop interchange, loop
skewing.

Use new cacheability instructions and memory-ordering behavior for Pentium 4
processor.

Optimize Floating-point Performance

Avoid exceeding representable ranges during computation, since handling these
cases can have a performance impact; however, do not use a larger precision
format (double-extended floating point) unless required, sinceit increases memory
size and bandwidth utilization.

Use the optimized f | dcw when possible, avoid changing floating-point
control/status registers (rounding modes) between more than two values.

Use efficient conversions, such as those that implicitly include arounding mode, in
order to avoid changing control/status registers.

Take advantage of the SIMD capabilities of Streaming SIMD Extensions (SSE),
and Streaming SIMD Extensions 2 (SSE?2) instructions; enable flush-to-zero mode
and DAZ mode when using SSE and SSE2 instructions.

Avoid denormalized input values, denormalized output values, and explicit
constants that could cause denormal exceptions.

Avoid excessive use of thef xch instruction.

Optimize Instruction Selection

Avoid longer latency instructions: shifts, integer multiplies and divides. Replace
them with alternate code sequences (e.g. adds instead of shifts, and shifts instead
of multiplies).

Usethel ea instruction and the full range of addressing modes to do address
calculation.

Some types of stores use more pops than others, try to use simpler store variants
and/or reduce the number of stores.

Avoid use of complex instructions that require more than 4 pops.

2-5

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Avoid instructions that unnecessarily introduce dependence-related stalls: i nc and
dec instructions, partial register operations (8/16-bit operands).

Avoid use of ah, bh, and other higher 8-bits of the 16-bit registers, because
accessing them requires a shift operation internaly.

Usexor and pxor instructions to clear registers and break dependencies.
Use efficient approaches for performing comparisons.

Optimize Instruction Scheduling

Consider latencies and resource constraints.
Calculate store addresses as early as possible.

Arrange load operations and store operations using the same address such that the
load does not follow the store immediately, especially if the store depends on a
long-latency operation.

Enable Vectorization

Use the smallest possible data type, to enable more parallelism with the use of a
longer vector.

Arrange the nesting of loops so that the innermost nesting level is free of
inter-iteration dependencies. Especially avoid the case where the store of datain an
earlier iteration happens lexically after the load of that data in a future iteration,
something which is called alexically-backward dependence.

Avoid the use of conditionals.
Keep induction (loop) variable expressions simple
Avoid using pointers, try to replace pointers with arrays and indices.

Coding Rules, Suggestions and Tuning Hints

Chapter 2 includes rules, suggestions and hints. They are maintained in
separately-numbered lists and are targeted for three audiences:

those modifying the source to enhance performance (user/source rules)
those writing assembly or compilers (assembly/compiler rules)

intel.

2-6

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* those doing detailed performance tuning (tuning suggestions)

Coding recommendations are ranked by importance in two ways:

* Loca impact (later on referred to as “impact”) is the difference that a
recommendation makes to performance for a given instance with the priority
marked as: H = high, M = medium, L = low.

* Generality —how frequently such instances occur across all application domains
with the priority marked as. H = high, M = medium, L = low.

These rules are intentionally very approximate. They can vary depending on coding
style, application domain, and other factors. The purpose of including high, medium
and low priorities to each recommendation is to provide some hints to the degree of
performance gain that one can expect if arecommendation isimplemented. Because it
is not possible to predict the frequency of occurrence of a code instancein
applications, a priority hint cannot be directly correlated to application-level
performance gain. However, in afew important cases where relevant application-level
performance gain has been observed, a more quantitative characterization of
application-level performance gain is provided for information only (See

“ Store-forwarding Restriction on Size and Alignment” and “Instruction Selection”).
In placeswhere thereis no priority assigned, the impact or generality has been deemed
inapplicable.

Performance Tools

Intel offers several tools that can facilitate your effort of optimizing your application’s
performance.

Intel® C++ Compiler

Use the Intel C++ Compiler following the recommendations described here wherever
possible. The Intel Compiler’s advanced optimization features provide good
performance without the need to hand-tune assembly code. However, the following
features may enhance performance even further:

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* Inlined assembly

* Intrinsics, which have a one-to-one correspondence with assembly language
instructions. (Refer to the “Intel C++ Intrinsics Reference” section of the Intel
C++ Compiler User’s Guide and Reference.)

® C++ classlibraries (Refer to the “Intel C++ Class Libraries for SIMD Operations
Reference” section of the Intel C++ Compiler User’s Guide and Reference.)

® Vectorization, in conjunction with compiler directives (pragmas). (Refer to the
“Compiler Vectorization Support and Guidelines’ section of the Intel C++
Compiler User’s Guide and Reference.)

The Intel C++ Compiler can generate a single executable which uses features such as
Streaming SIMD Extensions 2 to maximize performance on a Pentium 4 processor, but
which will still execute correctly on older processors without such features. (Refer to

the “Processor Dispatch Support” section in the Intel C++ Compiler User’s Guide and
Reference.)

General Compiler Recommendations

Any compiler that has been extensively tuned for the Pentium 4 processor can be
expected to match or outperform hand-coding in the genera case. However, if
particular performance problems are noted with the compiled code, some compilers
(like the Intel C++ and Fortran Compilers) allow the coder to insert intrinsics or inline
assembly, to exert greater control over what code is generated. If inlined assembly is
used, the user should verify that the code generated to integrate the inline assembly is
of good quality and yields good overal performance.

Default compiler switches are generally targeted for the common case. That is, an
optimization is may be made the default if it is beneficial for most programs. In the
unlikely event that a performance problem is root-caused to a poor choice on the part
of the compiler, using different switches for that compiler, or compiling that module
with a different compiler may be fruitful aternatives.

Performance of compiler-generated code may vary from one compiler vendor to
another. Intel’s C++ and Fortran Compilers are highly optimized for the Pentium 4
processor. You may find significant performance advantages to using this as your
back-end compiler.

2-8

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

VTune™ Performance Analyzer

Where performance is of critical concern, use performance monitoring hardware and
software tools to tune your application and its interaction with the hardware. The
Pentium 4 processor provides counters which monitor a large number of
performance-related events, effecting overall performance, branch prediction, the
number and type of cache misses, and average trace length. The counters aso provide
information that helps resolve the coding pitfalls.

The VTune Performance Analyzer uses these counters to provide you with two kinds
of feedback:

* anindication of aperformance improvement from using a specific coding
recommendation or microarchitectural feature

* information on whether a change in the program has improved or degraded
performance with respect to a particular metric

Note that improving performance in one part of the machine does not necessarily bring
significant gainsto overall performance. In general, improving each component of
performance should have an overall positive effect, although it is possible to degrade
overall performance by improving performance for some particular metric.

Where appropriate, coding recommendations in this chapter include descriptions of the
V Tune analyzer events that provide measurable data of the performance gain achieved
by following those recommendations. Refer to the VTune anayzer online help for
instructions on how to use thistool.

The VTune analyzer events include a number of Pentium 4 processor performance
metrics described in Appendix B, “Intel Pentium 4 Processor Performance Metrics’.

Processor Generations Perspective

The Pentium 4 processor retains many of the features of the Pentium Il processors, and
adds afew new features. The mgjority of the coding recommendations for the
Pentium 4 processor aso apply to the Pentium Il processors. However, there are
notable differences, the most important of which are as follows:

intel. 29

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Instruction decode is now much lessimportant. The scheduling concerns regarding
the 4-1-1 template (instruction with four pops followed by two instructions with
one pop each) no longer apply. Theintroduction of the trace cache (TC) means that
the machine spends much less time decoding instructions.

The loops should be exited with forward branches, if the extra branch incurs no
added delay.

Dependencies on partial register writes incurred large penalties on Pentium 11 and
Pentium Il processors. These penalties have been resolved by artificial
dependencies between each partial register write. However, to avoid false
dependences from partial register updates, full register updates and extended
moves should be used.

Some latencies have decreased; for example, these simple arithmetic operations
aretwice asfast: add, sub, cnp, test, and, or, xor, neg, not , sahf , nov.

Some latencies have increased: shifts, rotates, integer multiplies, and moves from
memory with sign extension are longer than before. Additional care must be taken
regarding when to use the | ea instruction. See the "“Use of the lea Instruction” for
specific recommendations.

Theinc and dec instructions should aways be avoided. Using add and sub
instructions instead of i nc and dec instructions avoid data dependence and
improve performance.

Dependence-breaking support is added for the pxor instruction.

Floating point register stack exchange instructions were free; now they are slightly
more expensive due to issue restrictions.

Writes and reads to the same location should now be spaced apart. Thisis
especialy true for writes that depend on long-latency instructions.

Hardware prefetching may shorten the effective memory latency for data and
instruction accesses.

New cacheability instructions are available to streamline stores and manage cache
utilization.

Cache lines are 64 bytes on Pentium 4 processor (See Table 1-1), compared to
cache line size of 32 bytesin Pentium Il and Pentium Il processors. Thus optimal
prefetching should be done less often on Pentium 4 processors, and false sharing is
more of an issue.

2-10

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* Theprimary code size limit of interest is now imposed by the trace cache instead
of the instruction cache.

* There may be a penalty when instructions with immediates requiring more than
16-bit signed representation are placed next to other instructions that use
immediates.

Note that all of the memory-related optimization techniques for store-forwarding, data
splits and alignments help Pentium 4 processor as well as Pentium 111 processors.
Instruction selection using instruction latencies is one of the few instances where
tuning for the Pentium 4 processor can slightly degrade performance of some code on
the Pentium 111 processor.

The CPUID Dispatch Strategy and Compatible Code Strategy

Where optimum performance on all processor generationsis desired, the application
can take advantage of the cpui d instruction to identify the processor generation and
integrate processor-specific instructions (such as SSE2 instructions) into the source
code where appropriate. The Intel C++ Compiler supports the integration of different
versions of the code for each target processor within the same binary code. The
selection of which code to execute at runtime is made based on the CPU identifier that
isread with the cpui d instruction. Binary code targeted for different processor
generations can either be generated under the control of the programmer or
automatically by the compiler.

For applications that must run on more than one generation of 1A-32 processors, such
asthe Intel Pentium 4 and Pentium III processors, and where minimum binary code
size and single code path is important, a compatible code strategy is the best. Using
this strategy, only instructions common to the Pentium 4 and Pentium Il processors are
used in the source code. The programmer should optimize the application to achieve
optimum performance on the Pentium 4 processor. This approach to optimization is
also likely to deliver high performance on previous processor generations.

2-11

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Branch Prediction

Branch optimizations have some of the greatest impact on performance.
Understanding the flow of branches and improving the predictability of branches can
increase the speed of your code significantly.

The basic kinds of optimizations that help branch prediction are:

* Keep code and data on separate pages (avery important item, see more detailsin
the “Memory Accesses’ section).

¢ Eliminate branches.

* Arrange code to be consistent with the static branch prediction algorithm.

* |fitisnot possibleto arrange code, use branch direction hints where appropriate.
* Usethe pause instruction in spin-wait loops.

* Inlinefunctions and pair up calls and returns.

* Unroll as necessary so that repeatedly-executed loops have sixteen or fewer
iterations, unless this causes an excessive code size increase.

* Separate branches so that they occur no more frequently than every three pops
where possible.

Eliminating Branches

Eliminating branches improves performance due to:
* reducing the possibility of mispredictions

* reducing the number of required branch target buffer (BTB) entries; conditiona
branches, which are never taken, do not consume BTB resources.

There are four principal ways of eliminating branches:

* Arrange code to make basic blocks contiguous.

Unroll loops, as discussed in the “Loop Unrolling” section.
® Usethecnov instruction.

* Usetheset cc instruction.

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arrange code to make basic
blocks contiguous to eliminate unnecessary branches.

intel ® 2-12

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the set cc and cnov
instructions to eliminate unpredictable conditional branches where possible. Do not do this for
predictable branches. Also, do not use these instructions to eliminate all unpredictable
conditional branches. Because using these instructions will incur execution overhead due to
executing both paths of a conditional branch; Use theseinstructions only if theincreasein
computation timeis less than the expected cost of a mispredicted branch.

Consider aline of C code that has a condition dependent upon one of the constants:

X = (A < B) ? CONST1 : CONST2;
This code conditionally compares two values, A and B. If the condition istrue, X is set
to CONST1; otherwiseit is set to CONST2. An assembly code sequence equivalent to the

above C code can contain branches that are not predictableif there are no correlationin
the two values. Example 2-1 shows the assembly code with unpredictable branches.

The unpredictable branchesin Example 2-1 can be removed with the use of the set cc
instruction. Example 2-2 shows an optimized code that does not have branches.

Example 2-1 Assembly Code with an Unpredictable Branch

cnp A B ; condition
j ge L30 ; conditional branch
nov ebx, CONST1 ; ebx holds X
jmp L31 ; uncondi tional branch
L30:
nov ebx, CONST2
L31:

Example 2-2 Code Optimization to Eliminate Branches

xXor ebx, ebx ; clear ebx (X in the C code)
cnp A B
set ge bl ; When ebx = 0 or 1

; OR the comnpl enent condition
sub ebx, 1 ; ebx=11...11 or 00...00
and ebx, CONST3 ; CONST3 = CONST1- CONST2
add ebx, CONST2 ; ebx=CONST1 or CONST2

2-13

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

The optimized code sets ebx to zero, then comparesA and B. If Ais greater than or
equal to B, ebx isset to one. Then ebx is decreased and “and-ed” with the difference of
the constant values. This sets ebx to either zero or the difference of the values. By
adding CONST2 back to ebx, the correct value is written to ebx. When CONST2 is equal
to zero, the last instruction can be deleted.

Another way to remove branches on Pentium |1 and following processors is to use the
cnov and f cnov instructions. Example 2-3 shows changing at est and branch
instruction sequence using cnov and eliminating a branch. If thet est setsthe equal
flag, the valuein ebx will be moved to eax. This branch is data-dependent, and is
representative of an unpredictable branch.

Example 2-3 Eliminating Branch with CMOV Instruction

test ecx, ecx

jne 1h

nov eax, ebx
1lh:

To optinize code, combine jne and nov into one cnovcc
instruction that checks the equal flag

t est ecx, ecx ; test the flags
crmoveq eax, ebx ; if the equal flag is set, nove
ebx to eax - the I'h: tag no | onger needed

Thecnov and f cnov instructions are available on the Pentium |1 and subsequent
processors, but not on Pentium processors and earlier 32-bit Intel architecture
processors. Be sure to check whether a processor supports these instructions with the
cpui d instruction if an application needs to run on older processors as well. Code can
often be arranged so that control can flow from one basic block to the next without
having to execute a branch.

2-14

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Spin-Wait and Idle Loops

The Pentium 4 processor introduces anew pause instruction which is architecturally a
nop on al known I1A-32 implementations. To the Pentium 4 processor, it acts as a hint
that the code sequence is a spin-wait loop. Without a pause instruction in these loops,
the Pentium 4 processor may suffer a severe penalty when exiting the loop because the
processor detects a possible memory order violation. Inserting the pause instruction
significantly reduces the likelihood of a memory order violation, improving
performance. The Pentium 4 processor can execute a spin-wait loop using fewer
resources and little power.

In Example 2-4, the code is spinning until memory location A matches the value stored
in the register eax. Such code sequences are common when protecting a critical
section, in producer-consumer sequences, for barriers, or other synchronization.

Example 2-4 Use of pause Instruction

| ock: cnp eax, A
j ne | oop
code in critical section:
| oop: pause
cnp eax, A
j ne | oop
jmp 1 ock

Static Prediction

Branchesthat do not have ahistory inthe BTB (see “Branch Prediction”) are predicted
using a static prediction algorithm. The Pentium 4, Pentium Il and Pentium 11
processors have the same static prediction algorithm. as follows:

* Predict unconditional branchesto be taken.

* Predict backward conditional branchesto be taken. Thisruleis suitable for loops.
* Predict forward conditional branchesto be NOT taken.

* Predict indirect branchesto be NOT taken.

2-15

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be consistent
with the static branch prediction algorithm: make the fall-through code following a conditional
branch be the likely target for a branch with a forward target, and make the fall-through code
following a conditional branch be the unlikely target for a branch with a backward target.

Example 2-5illustrates the static branch prediction algorithm. The body of ani f - t hen
conditional is predicted to be executed.

Example 2-5 Pentium 4 Processor Static Branch Prediction Algorithm

forward conditional branches not taken (fall through)
If <condition> {

} i Unconditional Branches taken
MP

for <condition> { >

" |

Backward Conditional Branches are taken

loop {

} <condition>

Examples 2-6, 2-7 provide basic rules for the static prediction algorithm.

Example 2-6 Static Taken Prediction Example

Begi n: nov eax, nmenB2
and eax, ebx
i mul eax, edx
shl d eax, 7
jc Begi n

intel. 216

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

In Example 2-6, the backward branch (JC Begi n) isnot in the BTB thefirst time
through, therefore, the BTB does not issue a prediction. The static predictor, however,
will predict the branch to be taken, so a misprediction will not occur.

Example 2-7 Static Not-Taken Prediction Example

nov eax, menB2
and eax, ebx
i mul eax, edx

shl d eax, 7

jc Begi n
nov eax, O
Begi n: call Convert

Thefirst branch instruction (JC Begi n) in Example 2-7 segment is a conditional
forward branch. It is not in the BTB the first time through, but the static predictor will
predict the branch to fall through.

The static prediction algorithm correctly predicts that the Cal | Convert instruction
will be taken, even before the branch has any branch history in the BTB.

Branch Hints

The Pentium 4 processor provides a feature that permits the programmer to provide
hints to the branch prediction and trace formation hardware to enhance their
performance. These hints take the form of prefixes to any type of branch instruction.
Branch hints are not guaranteed to have any effect, and their function may vary across
implementations. On the Pentium 4 processor, branch hints are active only for relative
conditional branches. However, since branch hints are architecturally visible to the
decoder, they should be inserted only in cases which are likely to be helpful across all
implementations or have significant benefit to the Pentium 4 processor
implementation.

Branch hints are interpreted by the translation engine, and are used to assist branch
prediction and trace construction hardware. They are only used at trace build time, and
have no effect within built traces.

2-17

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Directional hints override the static (forward-taken, backward-not-taken) prediction in
the event that aBTB prediction is not available. Because branch hints increase code
size dlightly, the preferred approach to providing directional hintsis by the
arrangement of code so that forward branches are probably not taken and backward
branches are. Since the branch prediction information, available when the trace is built,
isused to predict which path or trace through the code will be taken, directiona branch
hints can help traces be built along the most likely path.

Use prefix 3E for taken and 2E for not taken conditional branches.

Assembly/Compiler Coding Rule 4. (L impact, MH generality) Do not use directional
branch hintsif it is possible to position code to be consistent with the static branch prediction
algorithm.

In that case, there is no need to introduce a prefix, which increases code size.

Assembly/Compiler Coding Rule 5. Use directional branch hints only in the case if the
probability of the branch being taken in the prescribed direction is greater than 50%. Use code
positioning to adhere to the static prediction algorithm wherever possible.

There may be cases where predicting the initial direction differently from the typical
direction may improve performance, but doing so is not recommended for long-term
compatibility reasons.

Inlining, Calls and Returns

The return address stack mechanism augments the static and dynamic predictors to
optimize specifically for calls and returns. It holds 16 entries, which islarge enough to
cover the call depth of most programs. If thereis a chain of more than 16 nested calls,
then more than 16 returns in rapid succession, performance may be degraded.

The trace cache maintains branch prediction information for calls and returns. Aslong
as the trace with the call or return remainsin the trace cache, and if the call and return
targets remain unchanged, the depth limit of the return address stack described above
will not impede performance.

To enable the use of the return stack mechanism, calls and returns must be matched up
in pairs exactly. The likelihood of exceeding the stack depth in a manner that will
impact performance is very low.

2-18

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 6. (MH impact, MH generality) Near calls must be
matched with near returns, and far calls must be matched with far returns. Pushing the return
address on the stack and jumping to the routine to be called is not recommended since it
creates a mismatch in calls and returns.

Calls and returns are expensive, therefore inlining can be used for these reasons:
* The parameter passing overhead can be eliminated.
* Inacompiler, inlining afunction can expose more opportunity for optimization.

* |f theinlined routine contains branches, the additional context of the caller may
improve branch prediction within the routine.

* A mispredicted branch can lead to larger performance penalties inside a small
function than if that function isinlined.

Assembly/Compiler Coding Rule 7. (MH impact, MH generality) Selectivelyinlinea

function where doing so decreases code size, or if the function is small and the call siteis

frequently executed.

Assembly/Compiler Coding Rule 8. (H impact, M generality) Do not inline a function if
doing so increases the working set size beyond what will fit in the trace cache.

Assembly/Compiler Coding Rule 9. (ML impact, ML generality) If there are more than 16
nested calls and returns in rapid succession, then consider transforming the program, for
example, with inline, to reduce the call depth.

Assembly/Compiler Coding Rule 10. (ML impact, ML generality) Favor inlining small
functions that contain branches with poor prediction rates. If a branch misprediction resultsin
a RETURN being prematurely predicted as taken, a performance penalty may be incurred.

Branch Type Selection
Counting loops can have atest and conditional branch at the top of the loop body or at
the bottom.

Assembly/Compiler Coding Rule 11. (M impact, MH generality) If the average number of
total iterationsisless than or equal to 100, use a forward branch to exit the loop.

"Ttel ® 2-19

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Indirect branches, such as switch statements, computed GOTGCs or calls through
pointers, can jump to an arbitrary number of locations. If the code sequence is such
that the target destination of a branch goes to the same address most of the time, then
the BTB will predict accurately most of the time. If, however, the target destination is
not predictable, performance can degrade quickly.

User/Source Coding Rule 1. (L impact, L generality) If some targets of an indirect branch
are very predictable, correlate either with preceding branches or with the same branch, then
convert the indirect branch into a tree where one or more indirect branches are preceded by

conditional branches to those targets.

Loop Unrolling

The benefits of unrolling loops are:

¢ Unrolling amortizes the branch overhead, since it eliminates branches and some of
the code to manage induction variables.

* Unrolling allows you to aggressively schedule (or pipeline) the loop to hide
latencies. Thisis useful if you have enough free registers to keep variables live as
you stretch out the dependence chain to expose the critical path.

* The Pentium 4 processor can correctly predict the exit branch for aninner loop that
has 16 or fewer iterations, if that number of iterations is predictable and there are
no conditional branchesin the loop. Therefore, if the loop body size is not
excessive, and the probable number of iterationsis known, unroll inner loops until
they have a maximum of 16 iterations. With Pentium 111 or Pentium |1 processors,
do not unroll loops more than 4 iterations.

The potential costs of unrolling loops are:

* Excessive unrolling, or unrolling of very large loops can lead to increased code
size. This can be harmful if the unrolled loop no longer fitsin the trace cache (TC).

¢ Unrolling loops whose bodies contain branches increases the demands on the BTB
capacity. If the number of iterations of the unrolled loop is 16 or less, the branch
predictor should be able to correctly predict branches in the loop body that
alternate direction.

Assembly/Compiler Coding Rule 12. (H impact, M generality) Unroll small loops until the
overhead of the branch and the induction variable accounts, generally, for less than about 10%
of the execution time of the loop.

2-20

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 13. (H impact, M generality) Avoid unrolling loops
excessively, as this may thrash the TC.

Assembly/Compiler Coding Rule 14. (M impact, M generality) Unroll loops that are
frequently executed and that have a predictable number of iterations to reduce the number of
iterationsto 16 or fewer, unless this increases code size so that the working set no longer fitsin
the trace cache. If theloop body contains more than one conditional branch, then unroll so
that the number of iterationsis 16/(# conditional branches).

Exampl e 2-8 shows how unrolling enables other optimizations.

Example 2-8 Loop Unrolling

Bef ore unrolling:
do i=1, 100
if (i md 2 ==0) then a(i) = x
else a(i) =y
enddo
After unrolling

do i=1,100,2
a(i) =y
a(i+l) = x
enddo

In this example, aloop that executes 100 times assigns x to every even-numbered
element and y to every odd-numbered element. By unrolling the loop you can make
both assignments each iteration, removing one branch in the loop body.

Compiler Support for Branch Prediction

Compilers can generate code that improves the efficiency of branch prediction in the
Pentium 4 and Pentium 111 processors. The Intel C++ Compiler accomplishes this by:

* keeping code and data on separate pages

* using conditional move instructions to eliminate branches

* generate code that is consistent with the static branch prediction algorithm
* inlining where appropriate

2-21

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* unrolling, if the number of iterationsis predictable

Also, with profile-guided optimization, the Intel compiler can better lay out basic
blocks to eliminate branches for the most frequently executed paths of afunction, or at
least improve their predictability. Thus the branch prediction need not be a concern at
the source level. For more information, see the Intel® C++ Compiler User’s Guide
and Reference.

Memory Accesses

This section discusses guidelines for optimizing code and data memory accesses. The
most important recommendations are:

* Align data, paying attention to data layout and stack alignment.
* Enable store forwarding.

* Place code and data on separate pages.

* Enhance datalocality.

* Use prefetching and cacheability control instructions.

* Enhance code locality and align branch targets.

* Take advantage of write combining.

Alignment and forwarding problems are among the most common sources of large
delays on the Pentium 4 processor.

Alignment

Alignment of data concerns all kinds of variables:

* dynamically allocated

* members of adata structure

* global or local variables

* parameters passed on the stack.

A misaligned data access can incur significant performance penalties. Thisis

particularly true for cache line splits. The size of acachelineis 64 bytesin the Pentium
4 processor, and is 32 bytes in Pentium |1l and Pentium |1 processors. On the Pentium 4

2-22

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

processor, an access to data that are unaligned on 64-byte boundary lead to two
memory accesses and requires several Lops to be executed instead of one. Accesses
that span either 16 byte or 64 byte boundaries are likely to incur alarge performance
penalty, since they are executed near retirement, and can incur stalls that are on the
order of the depth of the pipeline.

Assembly/Compiler Coding Rule 15. (H impact, H generality) Align data on natural
operand size address boundaries

For best performance, align data as follows:

* Align 8-bit data at any address.

* Align 16-bit data to be contained within an aligned four byte word.

* Align 32-bit data so that its base address is a multiple of four.

* Align 64-bit data so that its base address is a multiple of eight.

* Align 80-bit data so that its base address is a multiple of sixteen.

* Align 128-bit data so that its base address is a multiple of sixteen.

A 64-byte or greater data structure or array should be aligned so that its base addressis
amultiple of 64. Sorting datain decreasing size order isone heuristic for assisting with

natural alignment. Aslong as 16-byte boundaries (and cache lines) are never crossed,
natural alignment is not strictly necessary, though it is an easy way to enforce this.

Example 2-9 shows the type of code that can cause a cache line split. The code loads
the addresses of two dwor d arrays. 029e70feh is not a 4-byte-aligned address, so a
4-byte access at this address will get 2 bytes from the cache line this addressis
contained in, and 2 bytes from the cache line that starts at 029e7100h. On processors
with 64-byte cache lines, a similar cache line split will occur every 8 iterations.
Figure 2-1 illustrates the situation of accessing a data element that span across cache
line boundaries.

2-23

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Example 2-9 Code That Causes Cache Line Split

nov esi, 029e70f eh
nov edi, 05be5260h

Bl ocknove:
nov eax, DWORD PTR [esi]
nov ebx, DWORD PTR [esi +4]
nov DWORD PTR [edi], eax
nov DWORD PTR [edi +4], ebx
add esi, 8
add edi, 8
sub edx, 1
j nz Bl ocknmove

Figure 2-1 Cache Line Split in Accessing Elements in a Array

Address 029e70c1lh Address 029e70feh
— | |
| |
1 T
-7 < -
Cache Line 029e70cOh S~ S~ Index 0
Pid -
- -
| |
‘ i i i i i P Pl i i i ‘
Cache Line 029e7100h E) Index O cont'd Index 1 S~ \\\\ Index 15 Index 16 (%
‘ H H H H H - - H H H ‘
: : : : : - - : : :
| l
! J H H H ‘
Cache Line 029e7140h b Index 16 cont'd Index 17 S~ T~ - Index 31 Index 32 q
7 7 7 7 7 e - 7 7 7
\ i i i i i - - i i i \

Alignment of code is much less of an issue for the Pentium 4 processor than for earlier
processors. Alignment of branch targets to maximize bandwidth of fetching cached
instructions is an issue only when not executing out of the trace cache.

intel ® 2-24

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Store Forwarding

The processor’s memory system only sends stores to memory (including cache) after
store retirement. However, store data can be forwarded from a store to a subsequent
load from the same address to give a much shorter store-load latency.

There are two kinds of requirements for store forwarding. If these requirements are
violated, store forwarding cannot occur, and the load must get its data from the cache
(so the store must write its data back to the cache first). Thisincurs a penalty that is
related to the pipeline depth. Thefirst requirement pertainsto the size and alignment of
the store-forwarding data. This restriction islikely to have high impact to overall
application performance. Typically, performance penalty due to violating this
restriction can be prevented. Several examples of coding pitfalls that cause
store-forwarding stalls and solutions to these pitfalls are discussed in detail in

“ Store-forwarding Restriction on Size and Alignment”. The second requirement is the
availability of data, discussed in “ Store-forwarding Restriction on Data Availability”.

A good practice is to eliminate redundant |oad operations, see some guidelines below:

Assembly/Compiler Coding Rule 16. (H impact, H generality) Promote variables to
registers where profitable.

It may be possible to keep atemporary scalar variable in aregister and never writeit to
memory. Generally, such avariable must not be accessible viaindirect pointers.
Moving avariable to aregister eliminates all loads and stores of that variable, and thus
eliminates potential problems associated with store forwarding. However, it also
increases register pressure.

Assembly/Compiler Coding Rule 17. (MH impact, H generality) Eliminate redundant
loads.

If avariableis known not to change between when it is stored and when it is used
again, the register that was stored can be copied or used directly. If register pressureis
too high, or an unseen function is called before the store and the second load, it may
not be possible to eliminate the second load.

Assembly/Compiler Coding Rule 18. (H impact, M generality) Pass parametersin registers
instead of on the stack where possible.

Parameter passing conventions may limit the choice of which parameters are passed in
registersvs. on the stack. However, these limitations may be overcome if the compiler
has control of the compilation of the whole binary, with whole-program optimization.

2-25

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Store-forwarding Restriction on Size and Alignment

Data size and alignment restrictions for store-forwarding apply to Pentium 4 processor
and previous generations of | A-32 processors. The performance penalty from violating
store-forwarding restrictions was present in the Pentium 11 and Pentium 111 processors,
but the penalty islarger on the Pentium 4 processor. It has been observed in several
popular applications that the performance gain from not violating these restrictionsis
greater than 10%, at the application level on Pentium Il processor aswell as Pentium 4
processor. In general, the application-level performance gain will vary by application.
This section describes thisrestriction in al its cases, and prescribes recommendations
to prevent the non-forwarding penalty. Fixing this problem for the Pentium 4 processor
also fixes the same kind of problem on Pentium Il and Pentium 11l processors.

The size and alignment restrictions for store forwarding areillustrated in Figure 2-2.

Figure 2-2 Size and Alignment Restrictions in Store Forwarding

Load Aligned with

Store Will Forward Non-forwarding

(CY

Large Store Load _ P%
A
(b)
cizeoftoss > Sore SN
store oo 2722277777
©)
cire of Load o ST \\ NN 'It
Store(®) o 2222
(C)) A
128-bit Forward Store ! m : :
Must Be 16-Byte : Penalty
Aligned Load \- H E '
T

16-Byte
Boundary

Coding rules to help programmers satisfy size and alignment restrictions for store
forwarding follow.

intel.

N

-26

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 19. (H impact, M generality) A load that forwards from a
store must have the same address start point and therefore the same alignment as the store
data.

Assembly/Compiler Coding Rule 20. (H impact, M generality) The data of aload which is
forwarded from a store must be completely contained within the store data.

A load that forwards from a store must wait for the store's data to be written to the
store buffer before proceeding, but other, unrelated loads need not wait.

Assembly/Compiler Coding Rule 21. (H impact, ML generality) If it is necessary to extract
a non-aligned portion of stored data, read out the smallest aligned portion that completely
contains the data and shift/mask the data as necessary. The penalty for not doing thisis much
higher than the cost of the shifts.

Thisis better than incurring the penalties of afailed store-forward.

Assembly/Compiler Coding Rule 22. (MH impact, ML generality) Avoid several small
loads after large stores to the same area of memory by using a single large read and register
copies as needed.

Example 2-10 contains several store-forwarding situations when small loads follow
large stores. The first three load operations illustrate the situations described in Rule
22. However, the last load operation gets data from store-forwarding without problem.

Example 2-10 Several Situations of Small Loads After Large Store

nov [EBP], ‘ abcd’

nov AL, [EBP] ; not bl ocked - sane alignnent
nov BL, [EBP + 1] ; bl ocked
nov CL, [EBP + 2] ; bl ocked
nov DL, [EBP + 3] ; bl ocked
nov AL, [EBP] ; not bl ocked - sane alignnment

n. b. passes ol der bl ocked | oads

Example 2-11 illustrates a store-forwarding situation when alarge load follows after
several small stores. The data needed by the load operation cannot be forwarded
because al of the data that needs to be forwarded is not contained in the store buffer.
Avoid large loads after small stores to the same area of memory.

2-27

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Example 2-11 A Non-forwarding Example of Large Load After Small Store

nov [EBP], ‘a
nmov [EBP + 1], ‘b’
nov [EBP + 2], ‘c’
mov [EBP + 3], ‘d
nov EAX, [EBP] . bl ocked

; The first 4 small store can be consolidated into
a single DWORD store to prevent this non-forwarding situation

1

Example 2-12 illustrates a stalled store-forwarding situation that may appear in
compiler generated code. Sometimes a compiler generates code similar to that shown
in Example 2-12 to handle spilled byte to the stack and convert the byte to an integer
value.

Example 2-12 A Non-forwarding Situation in Compiler Generated code

nov DWORD PTR [esp+10h], 00000000h
nov BYTE PTR [esp+10h], bl
nov eax, DWORD PTR [esp+10h] ; Stall

and eax, Oxff ; converting back to byte val ue

Example 2-13 offers two alternatives to avoid the non-forwarding situation shown in
Example 2-12.

Example 2-13 Two Examples to Avoid the Non-forwarding Situation in Example 2-12

;A. Use nmovz instruction to avoid large load after snall store, when
; spills are ignored

novz eax, bl ; Replaces the last three instructions
; in Exanple 2-12

;B. Use nmovz instruction and handle spills to the stack
mov DWORD PTR [esp+10h], 00000000h

nov BYTE PTR [esp+10h], bl

novz eax, BYTE PTR [esp+10h] ; not bl ocked

2-28

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

When moving data that is smaller than 64 bits between memory locations, 64- or
128-hit SIMD register moves are more efficient (if aligned) and can be used to avoid
unaligned loads. Although floating-point registers allow the movement of 64 bitsat a
time, floating point instuctions should not be used for this purpose, as data may be
inadvertantly modified.

As an additional example, consider the following cases in Example 2-14. In the first
case (A), thereis alarge load after a series of small stores to the same area of memory
(beginning at memory address mem), and the large load will stall.

Thefld must wait for the stores to write to memory before it can access all the data it
requires. This stall can aso occur with other datatypes (for example, when bytes or
words are stored and then words or doublewords are read from the same area of
memory).

Example 2-14 Large and Small Load Stalls

; A, Large load stall

nov nmem eax ; store dword to address “nent

nov mem + 4, ebx ; store dword to address “nmem + 4"

fld mem ; load gword at address “menf, stalls
;B. Small Load stall

fstp nmem ; store gword to address “ment

nov bx, mem+2 ; load word at address “nmem + 2", stalls
nov cXx, mem+4 ; load word at address “nmem + 4", stalls

In the second case (Example 2-14, B), there isa series of small loads after alarge store
to the same area of memory (beginning at memory address mem), and the small loads
will stall.

The word loads must wait for the quadword store to write to memory before they can
access the data they require. This stall can also occur with other data types (for
example, when doublewords or words are stored and then words or bytes are read from
the same area of memory). This can be avoided by moving the store as far from the
loads as possible.

2-29

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Store-forwarding Restriction on Data Availability

The value to be stored must be available before the load operation can be completed. If
thisrestriction is violated, the execution of the load will be delayed until the datais
available. This delay causes some execution resources to be used unnecessarily, and
that can lead to some sizable but non-deterministic delays. However, the overall
impact of this problem is much smaller than that from size and alignment requirement
violations.

Assembly/Compiler Coding Rule 23. (H impact, M generality) Space out loads from the
store that forwards data to them. Note that placing intervening instructions between the load
and store does not guarantee separation in time.

The Pentium 4 processor predicts when loads are both, dependent on and get their data
forwarded from, preceding stores. These predictions can significantly improve
performance. However, if aload is scheduled too soon after the store it depends on, or
more likely, if the generation of the data to be stored is delayed, there can be a
significant penalty.

There are several cases where data is passed through memory, where the store may
need to be separated from the load:

* gpills, save and restore registers in a stack frame

® parameter passing

* global and volatile variables

* type conversion between integer and floating point

* some compilers do not analyze code that isinlined, forcing variables that are
involved in theinterface with inlined code to be in memory, creating more memory
variables and preventing the elimination of redundant loads.

Assembly/Compiler Coding Rule24. (ML impact, M generality) If aroutineissmall, space
apart the loads and stores that manage registers temporarily stored on the stack by re-loading
the registersin the same order that they were stored; that is, replace pushes and pops with
loads and stores, with the stores in the reverse order of pops.

Assembly/Compiler Coding Rule 25. (H impact, MH generality) Whereit is possible to do
so without incurring other penalties, prioritize the allocation of variablesto registers, asin
register allocation and for parameter passing, so as to minimize the likelihood and impact of
store- forwarding problems. Try not to store-forward data generated from a long latency

2-30

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

instruction, e.g. mul, div. Avoid store-forwarding data for variables with the shortest store-load
distance. Avoid store-forwarding data for variableswith many and/or long dependence chains,
and especially avoid including a store forward on a loop-carried dependence chain.

An example of aloop-carried dependence chain is shown in Example 2-15.

Example 2-15 An Example of Loop-carried Dependence Chain

for (i=0; i<MAX; i++) {
a[i] = b[i] * foo;
foo = a[i]/3;
} /!l foo is a |oop-carried dependence

Data Layout Optimizations

User/Source Coding Rule 2. (H impact, M generality) Pad data structures defined in the
source code so that every data element is aligned to a natural operand size address boundary.

Align data by providing padding inside structures and arrays. Programmers can
reorganize structures and arrays to minimize the amount of memory wasted by
padding. However, compilers might not have this freedom. The C programming
language, for example, specifies the order in which structure elements are allocated in
memory. Section “ Stack and Data Alignment” of Chapter 3, and Appendix D, “ Stack
Alignment”, further defines the exact storage layout. Example 2-16 shows how a data
structure could be rearranged to reduce its size.

Example 2-16 Rearranging a Data Structure

struct unpacked { /* fits in 20 bytes due to padding */

int a;
char b;
int (o
char d;
int e;

continued

"Ttel ® 2-31

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Example 2-16 Rearranging a Data Structure (continued)

struct packed { /* fits in 16 bytes */

int a, ¢, e;
char b, d;

Additionally, the longer cache line size for Pentium 4 processor can impact streaming
applications (for example, multimedia) which reference and use data only once before
discarding it. Data accesses which sparsely utilize the data within a cache line can
result in less efficient utilization of system memory bandwidth. For example, arrays of
structures can be decomposed into several arrays to achieve better packing, as shown
in Example 2-17.

Example 2-17 Decomposing an Array

struct {/* 1600 bytes */

int a, c, e;
char b, d;
} array_of _struct [100];

struct {/* 1400 bytes */
int a[100], c[100], e[100];
char b[100], d[100];

} struct_of array;

struct {/* 1200 bytes */

int a, c, e
} hybrid_struct_of_array_ace[100];

struct {/* 200 bytes */

char b, d;
} hybrid_struct_of_array_bd[100];

i ntel ® 2-32

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

The efficiency of such optimizations depends on usage patterns. If the elements of the
structure are all accessed together, but the access pattern of the array is random, then
array_of _struct avoids unnecessary prefetch even though it wastes memory.

However, if the access pattern of the array exhibitslocality, such asif the array index is
being swept through, then the Pentium 4 processor prefetches data from
struct _of _array, evenif the elements of the structure are accessed together.

Moreover, when the elements of the structure are not accessed with equal frequency,
such as when element a is accessed ten times more often than the other entries, then
struct _of _array not only saves memory, but it also prevents fetching unnecessary
dataitemsb, c,d,ande.

Using st ruct _of _arr ay also enables the use of the SIMD data types by the
programmer and the compiler.

Notethat st ruct _of _ar r ay can have the disadvantage of requiring more independent
memory stream references. This can require the use of more prefetches, additional
address generation calculations, as well as having a greater impact on DRAM page
access efficiency. An aternative, hybri d_struct _of _array blends the two
approaches. In this case, only 2 separate address streams are generated and referenced:
1for hybrid_struct_of _array_ace and 1for hybrid_struct_of array_bd. This
also prevents fetching unnecessary data, assuming the variables a, ¢ and e are always
used together; whereas the variablesb and d would be also used together, but not at the
sametimeasa, c and e. This hybrid approach ensures:

* simpler/fewer address generation than st ruct _of _array

e fewer streams, which reduces DRAM page misses

* use of fewer prefetches due to fewer streams

* efficient cache line packing of data elements that are used concurrently.

Assembly/Compiler Coding Rule 26. (H impact, M generality) Try to arrange data
structures such that they permit sequential access.

If the datais arranged into set of streams, the automatic hardware prefetcher can
prefetch data that will be needed by the application, reducing the effective memory
latency. If the datais accessed in a non-sequential manner, the automatic hardware
prefetcher cannot prefetch the data. The prefetcher can recognize up to eight
concurrent streams. See Chapter 6 for more information and the hardware prefetcher.

2-33

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Memory coherence is maintained on 64-byte cache lines on Pentium 4, rather than
earlier processors’ 32-byte cache lines. This can increase the opportunity for false
sharing.

User/Source Coding Rule 3. (M impact, L generality) Beware of false sharing within
64-byte cache lines.

Stack Alignment

The easiest way to avoid stack alignment problems is to keep the stack aligned at all
times. For example, if alanguage only supports 8-bit, 16-bit, 32-bit, and 64-bit data
guantities, but never uses 80-bit data quantities, the language can require the stack to
always be aligned on a 64-bit boundary.

Assembly/Compiler Coding Rule 27. (H impact, M generality) If 64-bit data is ever passed
as a parameter or allocated on the stack, make sure that the stack is aligned to an 8-byte
boundary.

A routine that makes frequent use of 64-bit data can avoid stack misalignment by
placing the code described in Example 2-18 in the function prologue and epilogue.

Example 2-18 Dynamic Stack Alignment

pr ol ogue:
subl esp, 4 ; save frane ptr
nov| [esp], ebp
nov| ebp, esp ; new frane pointer
andl ebp, OxFFFFFFFC; aligned to 64 bits
nov| [ebp], esp ; save old stack ptr
subl esp, FRAMESI ZE ; allocate space
; ... callee saves, etc.

epi | ogue:
; ... callee restores, etc.
nov| esp, [ebp] ; restore stack ptr
nov| ebp, [esp] ; restore frame ptr
addl esp, 4

ret

2-34

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

If for some reason it is not possible to align the stack for 64-bit, the routine should
access the parameter and save it into aregister or known aligned storage, thus
incurring the penalty only once.

Aliasing Cases

There are several cases where addresses with a given stride will compete for some
resource in the memory hierarchy. Note that first-level cache lines are 64 bytes and
second-level cache lines are 128 bytes. Thus the least significant 6 or 7 bits are not
considered in alias comparisons. The aliasing cases are listed below.

2K for data— map to the same first-level cache set (32 sets, 64-byte lines). There
are 4 waysin thefirst-level cache, so if there are more that 4 linesthat alias to the
same 2K modulus in the working set, there will be an excess of first-level cache
Mi Sses.

16K for data— will ook the same to the store-forwarding logic. If there has been a
store to an address which aliases with the load, the load will stall until the store
datais available.

16K for code — can only be one of these in the trace cache at atime. If two traces
whose starting addresses are 16K apart are in the same working set, the symptom
will be ahigh trace cache missrate. Solve this by offsetting one of the addresses by
1 or more bytes.

32K for code or data— map to the same second-level cache set (256 sets, 128-byte
lines). There are 8 ways in the second-level cache, so if there are more than 8 lines
that alias to the same 32K modulus in the working set, there will be an excess of
second-level cache misses.

64K for data— can only be one of these in thefirst-level cache at atime. If a
reference (load or store) occurs that has bits 0-15 of the linear address, which are
identical to areference (load or store) which is under way, then the second
reference cannot begin until the first one is kicked out of the cache. Avoiding this
kind of aliasing can lead to afactor of three speedup.

If alarge number of data structures are in the same working set, accesses to aliased
locations in those different data sets may cause cache thrashing and store forwarding
problems. For example, if the code dynamically allocates many data 3KB structures,
some memory allocatorswill return starting addresses for these structures which areon

2-35

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

4K B boundaries. For the sake of simplifying this discussion, suppose these allocations
were made to consecutive 4K B addresses (though that scenario is more likely to be
random in areal system). Then every structure would alias with the structure allocated
16 structures after it. Thus the likelihood of aliasing conflicts may increase with the
sizes of the data structures.

Assembly/Compiler Coding Rule 28. (H impact, MH generality) Lay out data or order
computation to avoid having cache lines that have linear addresses that are a multiple of 64KB
apart in the same working set. Avoid having more than 4 cache lines that are some multiple of
2KB apart in the same first-level cache working set, and avoid having more than 8 cache lines
that are some multiple of 32KB apart in the same second-level cache working set. Avoid having
a store followed by a non-dependent load with addresses that differ by a multiple of 16KB.

When declaring multiple arrays that are referenced with the same index and are each a
multiple of 64KB (as can happen with st ruct _of _ar r ay datalayouts), pad them to
avoid declaring them contiguously. Padding can be accomplished by either intervening
declarations of other variables, or by artificially increasing the dimension.

User/Source Coding Rule 4. (H impact, ML generality) Consider using a special memory
allocation library to avoid aliasing.

One way to implement amemory allocator to avoid aliasing isto allocate more than
enough space and pad. For example, allocate structures that are 68K B instead of 64K B
to avoid the 64K B aliasing, or have the allocator pad and return random offsets that are
amultiple of 128 Bytes (the size of a cache line).

User/Source Coding Rule 5. (M impact, M generality) When padding variable declarations
to avoid aliasing, the greatest benefit comes from avoiding aliasing on second-level cache
lines, suggesting an offset of 128 bytes or more.

Mixing Code and Data

The Pentium 4 processor’s aggressive prefetching and pre-decoding of instructions has
two related effects:

¢ Self-modifying code works correctly, according to the Intel architecture processor
reguirements, but incurs a significant performance penalty. Avoid self-modifying
code.

2-36

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* Placing writable data in the code segment might be impossible to distinguish from
self-modifying code. Writable data in the code segment might suffer the same
performance penalty as self-modifying code.

Assembly/Compiler Coding Rule 29. (M impact, L generality) If (hopefully read-only) data
must occur on the same page as code, avoid placing it immediately after an indirect jump. For
example, follow an indirect jJump with its mostly likely target, and place the data after an
unconditional branch.

Tuning Suggestion 1. Rarely, a performance problem may be noted due to executing data on a
code page asinstructions. The only condition wherethisisvery likely to happen isfollowing an
indirect branch that is not resident in the trace cache. Only if a performance problemisclearly
due to this problem, try moving the data elsewhere, or inserting an illegal opcode or a pause
instruction immediately following the indirect branch. The latter two alter natives may degrade
performance in some circumstances.

Assembly/Compiler Coding Rule 30. (H impact, L generality) Always put code and data on
separate pages. Avoid self-modifying code wherever possible. If code isto be modified, try to
doit all at once and make sure the code that performs the modifications and the code being
modified are on separate pages, or at least in separate 1K regions.

Write Combining

Write combining (WC) improves performance in two ways:

* Onawrite missto the first-level cache, it allows multiple stores to the same cache
line to occur before that cache lineis read for ownership (RFO) from further out in
the cache/memory hierarchy. Then the rest of lineis read, and the bytes that have
not been written to are combined with the unmodified bytesin the returned line.

* It alows multiple writes to be assembled and written further out in the cache
hierarchy as a unit, saving port and bus traffic. Thisis particularly important for
avoiding partial writes to uncached memory.

There are 6 write-combining buffers. Up to two of those buffers may be written out to
higher cache levels and freed up for use on other write misses, so only four
write-combining buffers are guaranteed to be available for simultaneous use.

Assembly/Compiler Coding Rule 31. (H impact, L generality) If an inner loop writesto
more than four arrays, apply loop fission to break up the body of the loop such that only four
arrays are being written to in each iteration.

2-37

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

The write combining buffers are used for stores of al memory types. They are
particularly important for writes to uncached memory: writes to different parts of the
same cache line can be grouped into a single, full-cache-line bus transaction instead of
going across the bus (since they are not cached) as several partia writes. Avoiding
partial writes can have acritical impact on bus bandwidth-bound graphics applications,
where graphics buffers are in uncached memory. Separating writes to uncached
memory and writes to writeback memory into separate phases can assure that the write
combining buffers can fill before getting evicted by other write traffic. Eliminating
partial write transactions has been found to have performance impact of the order of
20% for some applications. Because the cache lines are 64 bytes for Pentium 4
processor instead of 32 bytes for Pentium I11 processor, and the maximum bandwidth
is higher for Pentium 4 processor, the potential gain for Pentium 4 processor is greater.
See more on optimizations at http://devel oper.intel.com/desi gn/pentium4/manuals.

Store ordering and visibility is another important issue for write combining. When a
write to a write combining buffer occurs, there will be a read-for-ownership (RFO). If
a subsequent write happens to another write combining buffer, a separate RFO will be
caused for that cache line. Thefirst cache line cannot be written again until the second
RFO has been serviced to guarantee properly-ordered visibility of the writes, causing a
delay. If the memory type for the writesis write combining, there will be no RFO since
thelineis not cached, and thereis no such delay. For more details on write combining,
see the Intel Architecture Software Developer’s Manual.

Locality Enhancement

Although cache miss rates may be low, processors typically spend a sizable portion of
their execution time waiting for cache misses to be serviced. Reducing cache misses by
enhancing a program’s locality is akey optimization. This can take several forms:
blocking to iterate over aportion of an array that will fit in the cache, loop interchange
to avoid crossing cache lines or page boundaries, and loop skewing to make accesses
contiguous.

User/Source Coding Rule 6. (H impact, H generality) Turn on loop optimizations in the
compiler to enhance locality for nested loops.

User/Source Coding Rule 7. (H impact, H generality) Optimization techniques such as
blocking, loop interchange, loop skewing and packing are best done by the compiler. Optimize
data structuresto either fit in one-half of the first-level cache or in the second-level cache.

2-38

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Optimizing for one-half of the first-level cache will bring the greatest performance
benefit. If one-half of the first-level cache istoo small to be practical, optimize for the
second-level cache. Optimizing for a point in between (for example, for the entire
first-level cache) will likely not bring a substantial improvement over optimizing for
the second-level cache.

Prefetching

The Pentium 4 processor has three prefetching mechanisms:
* hardware instruction prefetcher

e software prefetch for data

* hardware prefetch for cache lines of data or instructions.

Hardware Instruction Fetching

The hardware instruction fetcher reads instructions, 32 bytes at atime, into the 64-byte
instruction streaming buffers.

Software and Hardware Cache Line Fetching

The Pentium 4 processor provides hardware prefetching, in addition to software
prefetching. The hardware prefetcher operates transparently to fetch data and
instruction streams from memory, without requiring programmer’s intervention.

Starting to prefetch databeforeit is actually needed for aload can reduce the wait time
for the data and hence reduce the latency penalty of the load. The Pentium Il and
subsequent processors provide software prefetch instructions. The pr ef et chnt a
instructionislikely to be agood choice for most cases, because it brings the data close
and doesn’t pollute the caches.

Prefetching can provide significant gains, and the use of prefetches is recommended,
particularly for regular strided accesses. It must be used carefully however, and thereis
atrade-off to be made between hardware and software prefetching, based on
application characteristics such as regularity and stride of accesses, whether the
problem is bus bandwidth, issue bandwidth or the latency of loads on the critical path,
and whether the access patterns are suitable for non-temporal prefetch. An optimum
implementation of software-controlled prefetch can be determined empirically.

2-39

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

For adetailed description of how to use prefetching, see Chapter 6, “ Optimizing Cache
Usage for Intel Pentium 4 Processors’.

User/Source Coding Rule 8. (M impact, H generality) Try using compiler-generated
software prefetching if supported by the compiler you're using. Note: Asthe compiler’s
prefetch implementation improves, it is expected that its prefetch insertion will outperform
manual insertion except for code tuning experts, but thisis not always the case. If the compiler
does not support software prefetching, intrinsics or inline assembly may be used to manually
insert prefetch instructions.

Chapter 6 contains an example of using software prefetch to implement memory copy
algorithm.

Tuning Suggestion 2. If aload is found to miss frequently, either insert a prefetch beforeiit, or,
if issue bandwidth is a concern, move the load up to execute earlier.

Cacheability instructions

Co

de

SSE2 provides additional cacheability instructions that extend further from the
cacheability instructions provided in SSE. The new cacheability instructions include:

* new streaming store instructions
* new cacheline flush instruction
* new memory fencing instructions

For adetailed description of using cacheability instructions, see Chapter 6.

Because the trace cache (TC) removes the decoding stage from the pipeline for
frequently executed code, optimizing code alignment for decoding is not as important
aconsideration as it was on prior generation processors.

Careful arrangement of code can enhance cache and memory locality. Likely
sequences of basic blocks should be laid out contiguously in memory. This may
involve pulling unlikely code, such as code to handle error conditions, out of that
sequence. See “ Prefetching” section on how to optimize for the instruction prefetcher.

2-40

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 32. (M impact, H generality) If the body of a conditional
is not likely to be executed, it should be placed in another part of the program. If it is highly
unlikely to be executed and code locality is an issue, the body of the conditional should be
placed on a different code page.

Improving the Performance of Floating-point Applications

When programming floating-point applications, it is best to start with a high-level
programming language such as C, C++, or Fortran. Many compilers perform
floating-point scheduling and optimization when it is possible. However in order to
produce optimal code, the compiler may need some assistance.

Guidelines for Optimizing Floating-point Code

User/Source Coding Rule 9. (M impact, M generality) Target the Pentium 4 processor and
enable the compiler’s use of SSE2 instructions with appropriate switches.

Follow this procedure to investigate the performance of your floating-point

application:

* Understand how the compiler handles floating-point code.

* Look at the assembly dump and see what transforms are already performed on the
program.

* Study the loop nests in the application that dominate the execution time.

* Determine why the compiler is not creating the fastest code.

* Seeif thereisadependence that can be resolved.

* Determinethe problem area: bus bandwidth, cache locality, trace cache bandwidth,
or instruction latency. Focus on optimizing the problem area. For example, adding
prefetch instructions will not help if the busis already saturated, and if trace cache
bandwidth is the problem, the added prefetch pops may degrade performance.

For floating-point coding, follow al the general coding recommendations discussed
throughout this chapter, including:

* blocking the cache

® using prefetch

* enabling vectorization

* unrolling loops.

2-41

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays
inrange.

Out-of-range numbers cause very high overhead.

User/Source Coding Rule 11. (M impact, ML generality) Do not use high precision unless
necessary. Set the precision control (PC) field in the x87 FPU control word to "Single
Precision”. This allows single precision (32-bits) computation to complete faster on some
operations (for example, divides). It also allows for an early out on divides However, be
careful of introducing more than a total of two values for the floating point control word, or
there will be a large performance penalty. See “Floating-point Modes’.

User/Source Coding Rule 12. (H impact, ML generality) Use fast float-to-int routines. If
coding these routines, usethecvt t ss2si, cvttsd2si instructionsif coding with Sreaming
SMD Extensions 2.

Many libraries do more work than is necessary. The instructions
cvttss2si/cvttsd2si save many pops and some store-forwarding delays over some
compiler implementations, and avoids changing the rounding mode.

User/Source Coding Rule 13. (M impact, ML generality) Break dependence chains where
possible.

For example, to calculatez = a + b + ¢ + d, instead of

X = a + b;
y =X + ¢
z =y +d
use

X = a + b;
y =c + d;
z =x+y,

User/Sour ce Coding Rule 14. (M impact, ML generality) Usually, math libraries take
advantage of the transcendental instructions (for example, f si n) when evaluating elementary
functions. If thereis no critical need to evaluate the transcendental functions using the
extended precision of 80 bits, applications should consider alter nate, software-based
approach, such as look-up-table-based algorithm using inter polation techniques. It is possible
to improve transcendental performance with these techniques by choosing the desired numeric
precision, the size of the look-up tableland taking advantage of the parallelism of the
Sreaming SMD Extensions and the Sreaming SMD Extensions 2 instructions.

2-42

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Floating-point Modes and Exceptions

When working with floating-point numbers, high-speed microprocessors frequently
must deal with situations that need specia handling either by its hardware design or by
coding techniques in software. The Pentium 4 processor is optimized to handle the
most common cases of such situations efficiently.

Floating-point Exceptions

The most frequent situations that can lead to some performance degradations involve
the masked floating-point exception conditions such as:

* arithmetic overflow

* arithmetic underflow

* denormalized operand

Refer to Chapter 4 of the |A-32 Intel® Architecture Software Developer's Manual,
Volume 1 for the definition of overflow, underflow and denormal exceptions.

Denormalized floating-point numbers can impact performance in two ways:
e directly: when they are used as operands
* indirectly: when they are produced as aresult of an underflow situation

If afloating-point application never underflows, the denormals can only come from
floating-point constants.

User/Sour ce Coding Rule 15. (H impact, ML generality) Denormalized floating-point
constants should be avoided as much as possible.

Denormal and arithmetic underflow exceptions can occur during the execution of
either x87 instructions or SSE/SSE2 instructions. The Pentium 4 processor can handle
these exceptions more efficiently when executing SSE/SSE?2 instructions and when
speed is more important than complying to |EEE standard. The following two
paragraphs give recommendations on how to optimize your code to reduce
performance degradations related to floating-point exceptions.

2-43

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Dealing with floating-point exceptions in x87 FPU code

Every instance of a special situation listed in “Floating-point Exceptions’ is costly in
terms of performance. For that reason, x87 FPU code should be written to avoid these
specia situations.

There are basically three ways to reduce the impact of overflow/underflow situations
with x87 FPU code:

* Choose floating-point data types that are large enough to accommodate results
without generating arithmetic overflow and underflow exceptions.

* Scalethe range of operands/results to reduce as much as possible the number of
arithmetic overflow/underflow situations

* Keepintermediate results on the x87 FPU register stack until the final results have
been computed and stored to memory. Overflow or underflow islesslikely to
happen when intermediate results are kept in the x87 FPU stack (thisis because
data on the stack is stored in double extended-precision format and
overflow/underflow conditions are detected accordingly).

Denormalized floating-point constants (which are read only, and hence never change)
should be avoided and replaced, if possible, with zeros of the same sign.

Dealing with Floating-point Exceptions in SSE and SSE2 code

Most special situations that involve masked floating-point exception are handled very
efficiently on the Pentium 4 processor. When masked overflow exception occurs while
executing SSE or SSE2 code, the Pentium 4 processor handles this without
performance penalty.

Underflow exceptions and denormalized source operands are usually treated according
to the |IEEE 754 specification. If a programmer iswilling to trade pure IEEE 754
compliance for speed, two non-1EEE-754-compliant modes are provided to speed up
situations where underflows and input are frequent: FTZ mode and DAZ mode.

When the FTZ mode is enabled, an underflow result is automatically converted to a
zero with the correct sign. Although this behavior is not IEEE-754-compliant, it is
provided to use in applications where performance is more important than pure
|EEE-754 compliance. Since denormal results are not produced when the FTZ modeis
enabled, the only denormal floating-point numbers that can be encountered are the
ones that are constants (read only).

2-44

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

The DAZ modeis provided to handle denormal source operands efficiently when
running an SSE application. When the DAZ mode is enabled, input denormals are
treated as zeros with the same sign. Enabling the DAZ mode is the way to deal with
denormal floating-point constants when performance is the objective.

If departing from |EEE 754 specification is acceptable, and especially if performance
iscritical, it isadvised to run an SSE/SSE2 application with both FTZ and DAZ modes
enabled.

% NOTE. The DAZ mode is available with both the SSE and SSE2
= extensions, although the speed improvement expected from this
mode is fully realized only in SSE code.

Floating-point Modes

On the Pentium 111 processor, the FLDCwinstruction is an expensive operation. On the
Pentium 4 processor, the FLDCwinstruction isimproved for situations where an
application alternates between two constant values of the x87 FPU control word
(FCW), such as when performing conversions to integers.

Specifically, the optimization for the FLDCwinstruction allows programmers to
alternate between two constant values efficiently. For the FLDCwoptimization to be
effective, the two constant FCW values are only allowed to differ on the following 5
bitsin the FCW:

FCWI[8-9] precision control
FCWI[10-11] rounding control
FCWI[12] infinity control.

If programmers need to modify other bits, for example, the mask bits, in the FCW, the
FLDCWinstruction is still an expensive operation.

In situations where an application cycles between three (or more) constant values, the
FLDCwoptimization does not apply and the performance degradation will occur for
each FLDCwinstruction.

2-45

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

One solution to this problem is to choose two constant FCW values, take advantage of
the optimization of the FLDCwinstruction to alternate between only these two constant
FCW values, and devise some means to accomplish the task that required the 3rd FCW
value without actually changing the FCW to athird constant value. An aternative
solution isto structure the code, so that for some periods of time, the application first
alternates between only two constant FCW values. When the application later
alternates between a pair of different FCW values, the performance degradation occurs
only briefly during the transition.

It is expected that SIMD applications are unlikely to alternate FTZ and DAZ mode
values. Consequently, the SIMD control word does not have the short latencies that the
floating-point control register does. A read of the MXCSR register has afairly long
latency, and awrite is a serializing instruction.

There is no separate control word for single and double precision; both use the same
modes. Notably, this appliesto both FTZ and DAZ modes.

Assembly/Compiler Coding Rule 33. (H impact, M generality) Minimize changes to bits
8-12 of the floating point control word. Changing among more than two values of these bits
(precision, rounding and infinity control) leads to delays that are on the order of the pipeline
depth.

Rounding Mode

Many libraries provide the float-to-integer library routines that convert floating-point
values to integer. Many of these libraries conform to ANSI C coding standards which
state that the rounding mode should be truncation. With the Pentium 4 processor, one
can usethecvttsd2si andcvttss2si instructionsto convert operands with
truncation and without ever needing to change rounding modes. The cost savings of
using these instructions over the methods below is enough to justify using Streaming
SIMD Extensions 2 and Streaming SIMD Extensions wherever possible when
truncation isinvolved.

For x87 floating point, thef i st instruction uses the rounding mode represented in the
floating-point control word (FCW). The rounding mode is generally round to nearest,
therefore many compiler writers implement a change in the rounding mode in the
processor in order to conform to the C and FORTRAN standards. Thisimplementation
requires changing the control word on the processor using thef | dewinstruction. If this

2-46

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

isthe only change in the rounding, precision, and infinity bits, then use the f st cw
instruction to store the floating-point control word and then use the f | dcw instruction
to change the rounding mode to truncation.

In atypical code sequence that changes the rounding mode in the FCW, af st cw
instruction is usually followed by aload operation. The load operation from memory
should be a 16-hit operand to prevent store- forwarding problem. If the load operation
on the previously-stored FCW word involves either an 8-bit or a 32-bit operand, this
will cause a store-forwarding problem due to mismatch of the size of the data between
the store operation and the load operation.

Make sure that the write and read to the FCW are both 16-bit operations, to avoid
store-forwarding problems.

Only if there is more than one change to the rounding, precision and infinity bits, and
the rounding mode is not important to the results, then use the algorithm in Example
2-19to avoid the synchronization and overhead of thef | dcw instruction and changing
the rounding mode. This example suffers from a store-forwarding problem which will
lead to a severe performance penalty. However, its performance is still better than
changing the rounding, precision and infinity bits among more than two values.

Example 2-19 Algorithm to Avoid Changing the Rounding Mode

_ftol32proc

| ea ecx, [esp- 8]

sub esp, 16 ; allocate frame

and ecx, - 8 ; align pointer on boundary of 8
fld st (0) ; duplicate FPU stack top

fistp qword ptr[ecx]
fild gword ptr[ecx]

nov edx, [ecx+4] ; high dword of integer
nov eax, [ecx] ; low dword of integer
t est eax, eax
je i nteger_QaN_or_zero
continued
intel.

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Example 2-19 Algorithm to Avoid Changing the Rounding Mode (continued)

arg is not integer aN:

fsubp st(1), st ; TOS=d-round(d),
i { st(1l)=st(1l)-st & pop ST}
t est edx, edx ; what’'s sign of integer
jns positive ; number is negative
fstp dword ptr[ecx] ; result of subtraction
nov ecx, [ecx] ; dword of diff(single-
; precision)
add esp, 16
xor ecx, 80000000h
add ecx, 7fffffffh ; if diff<0 then decrenent
; integer
adc eax, 0 ; inc eax (add CARRY fl ag)
ret
positive
fstp dword ptr[ecx] ; 17-18 result of subtraction
nov ecx, [ecx] ; dword of diff(single precision)
add esp, 16
add ecx, 7fffffffh ; if diff<0 then decrenment integer
shb eax, 0 ; dec eax (subtract CARRY fl ag)
ret
i nteger_QnaN_or _zero:
test edx, 7fffffffh
j nz arg_i s_not_integer_(aN
add esp, 16
ret

Assembly/Compiler Coding Rule 34. (H impact, L generality) Minimize the number of
changes to the rounding mode. Do not use changes in the rounding mode to implement the
floor and ceiling functionsif thisinvolves a total of more than two values of the set of rounding,
precision and infinity bits.

intel ® 2-48

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Precision

If single precision is adequate, it is recommended over double precision. Thisistrue
for two reasons:

* Single precision operations allow the use of longer SIMD vectors, since more
single precision data elements fit in aregister than double precision elements.

* If the precision control (PC) field in the x87 FPU control word is set to “Single
Precision,” the floating-point divider can complete a single-precision computation
much faster than either a double-precision computation or an extended
double-precision computation. If the PC field is set to “ Double Precision,” thiswill
enable those x87 FPU operations on double-precision data to complete faster than
extended double-precision computation. These characteristics affect computations
including floating-point divide and square root.

Assembly/Compiler Coding Rule 35. (H impact, L generality) Minimize the number of
changes to the precision mode.

Improving Parallelism and the Use of FXCH

The x87 instruction set relies on the floating point stack for one of its operands for
most operations. If the dependence graph is atree, which means each intermediate
result is used only once, and code is scheduled carefully, it is often possible to use only
operandsthat are on the top of the stack or in memory, and to avoid using operands that
are buried under the top of the stack. When operands need to be pulled from the middle
of the stack, an f xch instruction can be used to swap the operand on the top of the
stack with another entry in the stack.

Anf xch instruction can also be used to enhance parallelism. Dependent chains can be
overlapped to expose more independent instructions to the hardware scheduler. An

f xch instruction may be required to effectively increase the register name space so that
more operands can be simultaneously live.

However, an f xch instruction inhibits issue bandwidth in the trace cache, not only
because it consumes a slot, but also because of issue slot restrictions imposed on f xch
instructions. If the application is not bound by issue or retirement bandwidth, the f xch
instructions will have no impact.

2-49

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

x8

7 VS.

The Pentium 4 processor’s effective instruction window size is large enough to permit
instructions that are as far away as the next iteration to be overlapped, often obviating
the need for using f xch instructions to enhance parallelism.

Thusthe f xch instruction should be used only when it is needed to express an
algorithm, or to enhance parallelism where it can be shown to be lacking. If the size of
the register name space is aproblem, the use of the XMM registersisrecommended, as
described in the next section.

Assembly/Compiler Coding Rule 36. (M impact, M generality) Usef xch only where
necessary to increase the effective name space.

Thisin turn alows instructions to be reordered to make instructions available to be
executed in parallel. Out-of-order execution precludes the need for using f xch to
move instructions for very short distances.

SIMD Floating-point Trade-offs

There are anumber of differences between x87 floating-point code and scalar
floating-point code using SSE and/or SSE2. These differences drive decisions about
which registers and accompanying instructions to use:

* When an input operand for a SIMD floating-point instruction contains values that
are less than the representabl e range of the datatype, adenormal exception occurs,
which causes significant performance penalty. SIMD floating-point operation hasa
flush-to-zero mode. In flush-to-zero mode, the results will not underflow.
Therefore subsequent computation will not face the performance penalty of
handling denormal input operands. For example, in atypical case of 3D
applications with low lighting levels, using flush-to-zero mode can improve
performance by as much as 50% on applications with alarge number of
underflows.

e Scalar floating point has lower latencies. This generally does not matter too much
aslong as resource utilization is low.

* Only x87 supports transcendental instructions.

* x87 supports 80-bit precision, double extended floating point. Streaming SIMD
Extensions support a maximum of 32-bit precision, and Streaming SIMD
Extensions 2 supports a maximum of 64-bit precision.

2-50

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* On the Pentium 4 processor, floating point adds are pipelined for x87 but not for
scalar floating-point code. Floating point multiplies are not pipelined for either
case. Thus for applications with alarge number of floating-point adds relative to
the number of nul ti pl i es, x87 may be a better choice.

* The scalar floating-point registers may be accessed directly, avoiding f xch and
top-of-stack restrictions. Furthermore, on the Pentium 4 processor, the
floating-point register stack may be used simultaneously with the XMM registers.
The same hardware is used for both kinds of instructions, but the added name
space may be beneficial.

* Thecost of converting from floating point to integer with truncation is
significantly lower with Streaming SIMD Extensions 2 and Streaming SIMD
Extensions in the Pentium 4 processor than with either changes to the rounding
mode or the sequence prescribed in the Example 2-19 above.

Assembly/Compiler Coding Rule 37. (M impact, M generality) Use Sreaming SMD
Extensions 2 or Sreaming SMD Extensions unless you need an x87 feature. Use x87
floating-point addsif the ratio of floating-point adds to the number of floating-point
mul ti pliesishigh.

Memory Operands

Double-precision floating-point operands that are eight-byte aligned have better
performance than operands that are not eight-byte aligned, since they are less likely to
incur penalties for cache and MOB splits. Floating-point operation on a memory
operands require that the operand be loaded from memory. Thisincurs an additional
pop, which can have a minor negative impact on front end bandwidth. Additionally,
memory operands may cause a data cache miss, causing a penalty.

Floating-Point Stalls

Floating-point instructions have a latency of at |least two cycles. But, because of the
out-of-order nature of Pentium |1 and the subsequent processors, stalls will not
necessarily occur on an instruction or pop basis. However, if an instruction has a very
long latency such as an f di v, then scheduling can improve the throughput of the
overall application.

"Ttel ® 2-51

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

x87 Floating-point Operations with Integer Operands

For Pentium 4 processor, splitting floating-point operations (f i add, fi sub, fi mul , and
fidi v) that take 16-bit integer operands into two instructions (fi | d and a
floating-point operation) is more efficient. However, for floating-point operations with
32-bit integer operands, using fi add, fi sub, fi nul , andfi di v isequaly efficient
compared with using separate instructions.

Assembly/Compiler Coding Rule 38. (M impact, L generality) Try to use 32-bit operands
rather than 16-bit operandsfor fi | d. However, do not do so at the expense of introducing a
store forwarding problem by writing the two halves of the 32-bit memory operand separately.

x87 Floating-point Comparison Instructions

On Pentium |1 and the subsequent processors, thef coni and f cnov instructions should
be used when performing floating-point comparisons. Using (f com f conp, f conpp)
instructions typically requires additional instruction like f st sw. The latter alternative
causes more pops to be decoded, and should be avoided.

Transcendental Functions

If an application needs to emulate these math functions in software due to performance
or other reasons (see “Guidelines for Optimizing Floating-point Code”), it may be
worthwhile to inline some of these math library calls because thecal | and the
prologue/epilogue involved with the calls can significantly affect the latency of the
operations.

Note that transcendental functions are supported only in x87 floating point, not in
Streaming SIMD Extensions or Streaming SIMD Extensions 2.

Instruction Selection

This section explains which instruction sequences to avoid or what alternative code
sequences to use when generating optimal assembly code. These optimizations have
been shown to contribute to the overall performance at the application level on the
order of 5%, across many applications. Although performance gain for individual
application will vary by benchmark.

The prioritized order of recommendations for instruction selection is:

2-52

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

* Choose instructions with shorter latencies and fewer pops.

* Use optimized sequences for clearing and comparing registers.
* Enhance register availability.

* Avoid prefixes, especially more than one prefix.

A compiler may be already doing a good job on instruction selection asit is. In that
case, user intervention usually is not necessary.

Complex Instructions

Assembly/Compiler Coding Rule 39. (ML impact, M generality) Avoid using complex
instructions (for example, ent er, | eave, or | oop) that generally have more than four pops
and require multiple cycles to decode. Use sequences of simple instructions instead.

Complex instructions may save architectural registers, but incur a penalty of 4 popsto
set up parameters for the microcode ROM.

Use of the | ea Instruction

In many cases an | ea instruction or a sequence of | ea, add, sub, andshi ft
instructions can be used to replace constant multiply instructions. The ea instruction
can be used sometimes as a three or four operand addition instruction, for example,

|l ea ecx, [eax + ebx + 4 + a]

Using thel ea instruction in this way can avoid some unnecessary register usage by not
tying up registers for the operands of some arithmetic instructions. It may also save
code space.

Thel ea instruction is not always as fast on the Pentium 4 processor asit is on the
Pentium 11 and Pentium Il processors. Thisis primarily due to the fact that the | ea
instruction can produce a shift pop. If thel ea instruction uses a shift by a constant
amount then the latency of the sequence of popsis shorter if adds are used instead of a
shift, and the | ea instruction is replaced with the appropriate sequence of pops.
However, thisincreases the total number of pops, leading to a trade-off:

2-53

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 40. (ML impact, M generality) If an| ea instruction
which uses the scaled index is on the critical path, the sequence with the adds may be better,
but if code density and bandwidth out of the trace cache are the critical factor, then the | ea
instruction should be used.

Use of the i nc and dec Instructions

Thei nc and dec instructions modify only a subset of the bitsin the flag register. This
creates a dependence on al previous writes of the flag register. Thisis especially
problematic when these instructions are on the critical path because they are used to
change an address for aload on which many other instructions depend.

Assembly/Compiler Coding Rule 41. (M impact, H generality) i nc and dec instructions
should be replaced with an add or sub instruction, because add and sub overwrite all flags.

The optimization of implementing Coding Rule 41 benefits Pentium 4 and future
I A-32 processors based on the Intel NetBurst micro-architecture, although it does not
help Pentium 11 processors, and it adds an additional byte per instruction.

Use of the shi ft and r ot at e Instructions

Theshift andr ot at e instructions have alonger latency on the Pentium 4 processor
than on previous processor generations. The latency of a sequence of addswill be
shorter for left shifts of three or less. Fixed and variable shifts have the same latency.

Assembly/Compiler Coding Rule 42. (M impact, M generality) If ashi ft isona critical
path, replaceit by a sequence of up to three adds. If its latency is not critical, use the shi f t
instead because it produces fewer pops.

Ther ot at e by immediate and r ot at e by register instructions are more expensive than
ashift. Therot at e by 1instruction has the same latency asashi ft .

Assembly/Compiler Coding Rule43. (ML impact, L generality) Avoid r ot at e by register
or r ot at e by immediate instructions. If possible, replace with ar ot at e by 1 instruction.

2-54

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Integer and Floating-point Multiply

The integer multiply operations, nul and i mul , are executed in the floating-point unit
so these instructions should not be executed in parallel with afloating-point
instruction. They also incur some extra latency due to being executed on the
floating-point unit.

A floating-point multiply instruction (f mul) delays for one cycle if the immediately
preceding cycle executed an f nul . The multiplier can only accept anew pair of
operands every other cycle.

Assembly/Compiler Coding Rule 44. (M impact, MH generality) Replace integer
multiplies by a small constant with two or more add and | ea instructions, especially when
these multiplications is part of a dependence chain.

Integer Divide

Typically, an integer divideis preceded by acwd or cdq instruction. Depending on the
operand size, divide instructions use DX: AX or EDX: EAX asthe dividend. The cwd or
cdq instructions sign-extend AX or EAX into DX or EDX, respectively. Theseinstructions
are denser encoding than ashi ft and nove would be, but they generate the same
number of pops. If AX or EAX are known to be positive, replace these instructions with

xor dx, dx

or
xor edx, edx

Assembly/Compiler Coding Rule45. (ML impact, L generality) Use cdwor cdq instead of
ashi ft and anove. Replace these with an xor whenever AX or EAX is known to be positive.

Operand Sizes

The Pentium 4 processor does not incur a penalty for partial register accesses asdid the
Pentium 11 and Pentium Il processors, since every operation on a partial register
updates the whol e register. However, this does mean that there may be false
dependencies between any references to partial registers. Example 2-20 demonstrates
aseries of false dependencies caused by referencing partial registers.

"Ttel ® 2-55

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Example 2-20 False Dependencies Caused by Referencing Partial Registers

1. add ah, bh

2: add al, 3 ; instructions 2 has a fal se dependency on 1
3: nov bl, al

4: nov ax, cx ; instructions 4 has a fal se dependency on 2
5. iml eax, 3 ; instructions 5 has a fal se dependency on 4
6: nmov al, bl ; instructions 6 has a fal se dependency on 5
7: add al, 13 ; instructions 7 has a fal se dependency on 6
8: imul dl, al ; instructions 8 has a fal se dependency on 7
9: nov al, 17 ; instructions 9 has a fal se dependency on 7

If instructions 4, 6 and 9 in Example 2-20 are changed to use a novzx instruction
instead of anov, then the dependences of instructions 4 on 2 (and transitively 1 before
it), instructions 6 on 5 and instructions 9 on 7 are broken, creating three independent
chains of computation instead of one serial one. Especially in atight loop with limited
parallelism, this optimization can yield several percent performance improvement.

Assembly/Compiler Coding Rule 46. (M impact, MH generality) Break dependences on
portions of registers between instructions by operating on 32-hit registers instead of partial
registers. For moves, this can be accomplished with 32-bit moves or by using novzx.

On Pentium Il processors, the novsx and novzx instructions both take a single pop,
whether they move from aregister or memory. On Pentium 4 processors, the movsx
takes an additional pop. Thisislikely to cause less delay than the partial register
update problem above, but the performance gain may vary. If the additional popisa
critical problem, novsx can sometimes be used as alternative. For example, sometimes
sign-extended semantics can be maintained by zero-extending operands. For example,
the C code in the following statements does not need sign extension, nor does it need
prefixes for operand size overrides:

static short int a, b
if (a==b) {

intel ® 2-56

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Code for comparing these 16-bit operands might be:
novzw eax, [a]
novzw ebx, [Db]
cnp eax, ebx

The circumstances, when this technique can be applicable, tend to be quite common.
However, this technique would not work if the compare was for greater than, less than,
greater than or equal, and so on, or if the valuesin eax or ebx were to be used in
another operation where sign extension was required.

Assembly/Compiler Coding Rule47. (M impact, M generality) Try to use zero extension or
operate on 32-hit operands instead of using moves with sign extension.

The trace cache can be packed more tightly when instructions with operands that can
only be represented as 32 bits are not adjacent.

Assembly/Compiler Coding Rule48. (ML impact, M generality) Avoid placing instructions
that use 32-bit immediates which cannot be encoded as a sign-extended 16-bit immediate near
each other. Try to schedule pops that have no immediate immediately before or after puops with
32-bit immediates.

Address Calculations

Use the addressing modes for computing addresses rather than using the
general-purpose computation. Internally, memory reference instructions can have four
operands:

relocatabl e | oad-time constant
* immediate constant

* Dbaseregister

scaled index register.

In the segmented model, a segment register may constitute an additional operand in the
linear address calculation. In many cases, several integer instructions can be
eliminated by fully using the operands of memory references.

2-57

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Clearing Registers

Pentium 4 processor provides special support to xor, sub, Or pxor operations,
specifically when executed within the same register, recognizing that clearing a
register does not depend on the old value of the register. The xor ps and xor pd
instructions do not have this special support, and cannot be used to break dependence
chains.

Assembly/Compiler Coding Rule49. (M impact, ML generality) Usexor, sub, or pxor to
set aregister to 0, or to break a fal se dependence chain resulting from re-use of registers. In
contexts where the condition codes must be preserved, move 0 into the register instead. This
requires more code space than using xor and sub, but avoids setting the condition codes.

Compares

Uset est when comparing avalue in aregister with zero. Test essentially ands the
operands together without writing to a destination register. Test is preferred over and
because and produces an extraresult register. Test isbetter thancnp ..., 0 because
the instruction size is smaller.

Uset est when comparing the result of alogical and with an immediate constant for
equality or inequality if the register iseax for cases such as.

if (avar & 8) { }
Thet est instruction can also be used to detect rollover of modulo a power of 2. For
example, the C code:

if ((avar %16) == 0) { }
can be implemented using:

test eax, OxOF

jnz Afterlf

Assembly/Compiler Coding Rule 50. (ML impact, M generality) Usethet est instruction
instead of and or cnp if possible.

2-58

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Often a produced value must be compared with zero, and then used in a branch.
Because most Intel architecture instructions set the condition codes as part of their
execution, the compare instruction may be eliminated. Thus the operation can be tested
directly by aj cc instruction. The most notable exceptions are nov and | ea. In these
cases, uUset est .

Assembly/Compiler Coding Rule51. (ML impact, M generality) Eliminate unnecessary
compare with zero instructions by using the appor priate conditional jump instruction when the
flags are already set by a preceding arithmetic instruction. If necessary, useat est instruction
instead of a compare. Be certain that any code transformations made do not introduce
problems with overflow.

Floating Point/SIMD Operands

Beware that in theinitial Pentium 4 processor implementation, the latency of MM X or
SIMD floating point register to register moves is quite long. This may have
implications for register alocation. However, this characteristic is not inherent to the
operation, and this latency could change significantly on future implementations.

Moves that write only a portion of aregister can introduce unwanted dependences.
Thenovsd reg, reg instruction writes only the bottom 64 bits of aregister, not all
128 bits. Thisintroduces a dependence on the preceding instruction that produces the
upper 64 bits, even if those bits are not longer wanted. The dependence inhibits the
machine's register renaming, and hence reduces parallelism. An alternative isto use
the movapd instruction, which writes all 128 bits. Even though the latter has alonger
latency, the pops for movapd use a different execution port, which is more likely to be
free. This change can has a severa percent impact on performance. There may be
exceptional cases where the latency matters more than the dependence or the execution
port.

Assembly/Compiler Coding Rule 52. (M impact, ML generality) Avoid introducing
dependences with partial floating point register writes, e.g. fromthe novsd xmmr eg1,
xmr eg2 instruction. Usethe novapd xmmr egl, xmmreg?2 instruction instead.

Thenovsd xmreg, mem however, writes al 128 bits, and hence breaks a
dependence.

2-59

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

The novupd from memory instruction performs two 64-bit loads, but requires
additional popsto adjust the address and combine the loadsinto asingleregister. This
same functionality can be obtained using novsd xmmregl, mem novsd xmreg2,
mem+8; unpckl pd xmmregl, xnmreg2, which usesfewer pops and can be packed into
the trace cache more effectively. The latter alternative has been found to provide
severa percent of performance improvement in some cases. Its encoding requires
more instruction bytes, but this is seldom an issue for the Pentium 4 processor. The
store version of novupd is complex and slow, such that the sequence with two novsd
and aunpckhpd should always be used.

Assembly/Compiler Coding Rule 53. (ML impact, L generality) Instead of using novupd
xmmr egl, nmem for aunaligned 128-bit load, use rovsd xmmr egl, nmem novsd
xmr eg2, mem+8; unpckl pd xmregl, xmmreg2. If the additional register isnot
available, then use novsd xmmr egl, nmem novhpd xmmregl, nem#8.

Assembly/Compiler Coding Rule 54. (M impact, ML generality) Instead of using movupd
mem xmmr egl for astore, usenovsd mem xmmregl; unpckhpd xmmregl, xmmregl;
movsd nmem+8, xmmr egl instead.

Prolog Sequences

Assembly/Compiler Coding Rule 55. (M impact, MH generality) In routines that do not
need EBP and that do not have called routines that modify ESP, use ESP as the base register to
free up EBP. This optimization does not apply in the following cases: a routineis called that
leaves ESP modified upon return, for example, al | oca; routines that rely on EBP for
structured or C++-style exception handling; routinesthat useset j np and | ongj np; and
routines that rely on EBP debugging.

If you are not using the 32-bit flat model, remember that EBP cannot be used as a
general purpose base register because it references the stack segment.

Code Sequences that Operate on Memory Operands

Careful management of memory operands can improve performance. Instructions of
theform“OP REG MEM' can reduce register pressure by taking advantage of hidden
scratch registers that are not available to the compiler.

intel ® 2-60

Intel Pentium 4 Processor Optimization

General Optimization Guidelines 2

Assembly/Compiler Coding Rule 56. (M impact, ML generality) Instead of explicitly
loading the memory operand into a register and then operating on it,reduce register pressure
by using the memory operand directly, if that memory operand is not reused soon.

The recommended strategy is as follows:

1. Initialy, operate on register operands and use explicit load and store instructions,
minimizing the number of memory accesses by merging redundant loads.

2. Inasubsequent pass, free up the registers that contain the operands that were in
memory for other uses by replacing any detected code sequence of the form
shown in Example 2-21 with OP REG, MEML.

Example 2-21 Recombining LOAD/OP Code into REG,MEM Form

LOAD regl, nmentl

code that does not wite to regl...
oP reg2, regl

code that does not use regl ...

Using memory as a destination operand may further reduce register pressure at the
slight risk of making trace cache packing more difficult.

On the Pentium 4 processor, the sequence of loading a value from memory into a
register and adding the resultsin aregister to memory isfaster than the alternate
sequence of adding a value from memory to aregister and storing the resultsin a
register to memory. The first sequence also uses one less pop than the latter.

Assembly/Compiler Coding Rule57. (ML impact, M generality) Give preferenceto adding
a register to memory (memory is the destination) instead of adding memory to a register.

Instruction Scheduling

Ideally, scheduling or pipelining should be done in away that optimizes performance
across all processor generations. This section presents scheduling rules that can
improve the performance of your code on the Pentium 4 processor.

2-61

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Latencies and Resource Constraints

Assembly/Compiler Coding Rule58. (M impact, MH generality) Calculate store addresses
as early as possible to avoid having stores block loads.

Spill Scheduling

The spill scheduling algorithm used by a code generator will be impacted by the
Pentium 4 processor memory subsystem. A spill scheduling algorithm is an algorithm
that selects what valuesto spill to memory when there are too many live valuestofitin
registers. Consider the code in Example 2-22, where it is necessary to spill either A, B,
or C.

Example 2-22 Spill Scheduling Example Code

LOOP

C
B :
A

A+ ...

For the Pentium 4 processor, using dependence depth information in spill scheduling is
even more important than in previous processors. The loop- carried dependencein A
makes it especially important that A not be spilled. Not only would a store/load be
placed in the dependence chain, but there would also be a data-not-ready stall of the
load, costing further cycles.

Assembly/Compiler Coding Rule 59. (H impact, MH generality) For small loops, placing
loop invariantsin memory is better than spilling loop-carried dependencies.

A possibly counter-intuitive result: in such asituation it is better to put loop invariants
in memory than in registers, since loop invariants never have aload blocked by store
data that is not ready.

2-62

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Scheduling Rules for the Pentium 4 Processor Decoder

The Pentium 4 processor has a single decoder that can decode instructions at the
maximum rate of one instruction per clock. Complex instruction must enlist the help of
the microcode ROM; see Chapter 1, “Intel® Pentium® 4 Processor Overview”, for
more details.

Unlike the Pentium Il and Pentium 11l processors, there is no need to schedule for
decoders with different capabilities.

Vectorization

This section provides a brief summary of optimization issues related to vectorization.
Chapters 3, 4 and 5 provide greater detail.

Vectorization is a program transformation which allows special hardware to perform
the same operation of multiple data elements at the same time. Successive processor
generations have provided vector support through the MM X technology, Streaming
SIMD Extensions technology and Streaming SIMD Extensions 2. Vectorization isa
special case of SIMD, aterm defined in Flynn’'s architecture taxonomy to denote a
Single Instruction stream capable of operating on Multiple Data el ementsin parallel.
The number of elements which can be operated on in parallel range from four
single-precision floating point data elementsin Streaming SIMD Extensions and two
double-precision floating- point data elements in Streaming SIMD Extensions 2 to
sixteen byte operationsin a 128-bit register in Streaming SIMD Extensions 2. Thusthe
vector length ranges from 2 to 16, depending on the instruction extensions used and on
the data type.

The Intel C++ Compiler supports vectorization in three ways:

* The compiler may be able to generate SIMD code without intervention from the
user.

* The user inserts pragmas to help the compiler realize that it can vectorize the code.
* Theuser may write SIMD code explicitly using intrinsics and C++ classes.

To help enable the compiler to generate SIMD code

* avoid global pointers

* avoid global variables

intel.

2-63

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

These may be less of a problem if al modules are compiled simultaneously, and
whole-program optimization is used.

User/Sour ce Coding Rule 16. (H impact, M generality) Use the smallest possible data type,
to enable more parallelismwith the use of a (longer) SSIMD vector. For example, use single
precision instead of double precision where possible.

User/Source Coding Rule 17. (M impact, ML generality) Arrange the nesting of loops so
that the innermost nesting level is free of inter-iteration dependencies. Especially avoid the
case where the store of data in an earlier iteration happens lexically after the load of that data
in a future iteration, something which is called a lexically backward dependence.

The integer part of the SIMD instruction set extensions are primarily targeted for
16-bit operands. Not all of the operators are supported for 32 bits, meaning that some
source code will not be able to be vectorized at all unless smaller operands are used.

User/Sour ce Coding Rule 18. (M impact, ML generality) Avoid the use of conditional
branches inside loops.

User/Sour ce Coding Rule 19. (M impact, ML generality) Keep induction (loop) variables
expressions simple.

Miscellaneous

NOPs

This section explains separate guidelines that do not belong to any category described
above.

Code generators generate a no-operation (NOP) to align instructions. The NOPs are
recommended for the following operations:

* 1-byte: xchg EAX, EAX

* 2-byte:novreg,reg

* 3-byte:l eareg, 0 (reg) (8-bit displacement)

* 6-byte: 1 eareg, O (reg) (32-bit displacement)

These are all true NOPs, having no effect on the state of the machine except to advance

the EIP. Because NOPs require hardware resources to decode and execute, use the least
number of NOPs to achieve the desired padding.

2-64

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

The one byte NOP, xchg EAX,EAX, has special hardware support. Although it still
consumes a pop and its accompanying resources, the dependence upon the old value of
EAX isremoved. Therefore, this uop can be executed at the earliest possible
opportunity, reducing the number of outstanding instructions. Thisis the lowest cost
NOP possible.

The other NOPs have no specia hardware support. Their input and output registers are

interpreted by the hardware. Therefore, a code generator should arrange to use the

register containing the oldest value as input, so that the NOP will dispatch and release

RS resources at the earliest possible opportunity.

Try to observe the following NOP generation priority:

* Select the smallest number of NOPs and pseudo-NOPs to provide the desired
padding.

* Select NOPsthat are least likely to execute on slower execution unit clusters.

* Select the register arguments of NOPs to reduce dependencies.

Summary of Rules and Suggestions

To summarize the rules and suggestions specified in this chapter, be reminded that
coding recommendations are ranked in importance according to these two criteria:

* Loca impact (referred to earlier as“impact”) — the difference that a
recommendation makes to performance for a given instance.

* Generality — how frequently such instances occur across all application domains.

Again, understand that this ranking isintentionally very approximate, and can vary
depending on coding style, application domain, and other factors. Throughout the
chapter you observed references to these criteria using the high, medium and low
prioritiesfor each recommendation. In places where there was no priority assigned, the
local impact or generality has been determined not to be applicable.

The sections that follow summarize the sets of rules and tuning suggestions referenced
in the manual.

2-65

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

User/Source Coding Rules

User/Source Coding Rule 1. (L impact, L generality) If some targets of an indirect branch
are very predictable, correlate either with preceding branches or with the same branch, then
convert the indirect branch into a tree where one or more indirect branches are preceded by

conditional branches to those targets 2-20

User/Source Coding Rule 2. (H impact, M generality) Pad data structures defined in the
source code so that every data element is aligned to a natural operand size address boundary
2-31

User/Source Coding Rule 3. (M impact, L generality) Beware of false sharing within
64-byte cache lines 2-34

User/Source Coding Rule 4. (H impact, ML generality) Consider using a special memory
allocation library to avoid aliasing. 2-36

User/Sour ce Coding Rule 5. (M impact, M generality) When padding variable declarations
to avoid aliasing, the greatest benefit comes from avoiding aliasing on second-level cache
lines, suggesting an offset of 128 bytes or more. 2-36

User/Source Coding Rule 6. (H impact, H generality) Turn on loop optimizations in the
compiler to enhance locality for nested loops. 2-38

User/Source Coding Rule 7. (H impact, H generality) Optimization techniques such as
blocking, loop interchange, loop skewing and packing are best done by the compiler. Optimize
data structuresto either fit in one-half of the first-level cache or in the second-level cache.
2-38

User/Source Coding Rule 8. (M impact, H generality) Try using compiler-generated
software prefetching if supported by the compiler you’'re using. Note: As the compiler’s
prefetch implementation improves, it is expected that its prefetch insertion will outperform
manual insertion except for code tuning experts, but thisis not always the case. If the
compiler does not support software prefetching, intrinsics or inline assembly may be used to
manually insert prefetch instructions. 2-40

User/Sour ce Coding Rule 9. (M impact, M generality) Target the Pentium 4 processor and
enable the compiler’s use of SSE2 instructions with appropriate switches. 2-41

User/Source Coding Rule 10. (H impact, ML generality) Make sure your application stays
in range 2-42

User/Sour ce Coding Rule 11. (M impact, ML gener ality) Do not use high precision unless
necessary. Set the precision control (PC) field in the x87 FPU control word to "Single
Precision”. This allows single precision (32-bits) computation to complete faster on some

2-66

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

operations (for example, divides). It also allows for an early out on divides However, be
careful of introducing more than a total of two values for the floating point control word, or
there will be a large performance penalty. See “Floating-point Modes’. 2-42

User/Source Coding Rule 12. (H impact, ML generality) Use fast float-to-int routines. If
coding these routines, usethecvt t ss2si, cvttsd2si instructionsif coding with Sreaming
SIMD Extensions 2. 2-42

User/Source Coding Rule 13. (M impact, ML generality) Break dependence chains where
possible. 2-42

User/Sour ce Coding Rule 14. (M impact, ML generality) Usually, math libraries take
advantage of the transcendental instructions (for example, f si n) when evaluating elementary
functions. If thereis no critical need to evaluate the transcendental functions using the
extended precision of 80 bits, applications should consider alternate, software-based
approach, such as look-up-table-based algorithm using inter polation techniques. It is possible
to improve transcendental performance with these techniques by choosing the desired numeric
precision, the size of the look-up tableland taking advantage of the parallelism of the
Sreaming SMD Extensions and the Sreaming SMD Extensions 2 instructions. 2-42

User/Sour ce Coding Rule 15. (H impact, ML generality) Denormalized floating-point
constants should be avoided as much as possible. 2-43

User/Sour ce Coding Rule 16. (H impact, M generality) Use the smallest possible data type,
to enable more parallelism with the use of a (longer) SSIMD vector. For example, use single
precision instead of double precision where possible. 2-64

User/Source Coding Rule 17. (M impact, ML generality) Arrange the nesting of loops so
that the innermost nesting level is free of inter-iteration dependencies. Especially avoid the
case where the store of data in an earlier iteration happenslexically after the load of that data
in a future iteration, something which is called a lexically backward dependence. 2-64

User/Source Coding Rule 18. (M impact, ML generality) Avoid the use of conditional
branches inside loops. 2-64

User/Source Coding Rule 19. (M impact, ML generality) Keep induction (loop) variables
expressions simple. 2-64

2-67

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rules

Assembly/Compiler Coding Rule 1. (MH impact, H generality) Arrange code to make
basic blocks contiguous to eliminate unnecessary branches. 2-12

Assembly/Compiler Coding Rule 2. (M impact, ML generality) Use the set cc and
cnov instructions to eliminate unpredictable conditional branches where possible. Do not
do thisfor predictable branches. Also, do not use these instructions to eliminate all
unpredictable conditional branches. Because using these instructions will incur execution
overhead due to executing both paths of a conditional branch; Use these instructions only
if the increase in computation timeisless than the expected cost of a mispredicted branch.
2-13

Assembly/Compiler Coding Rule 3. (M impact, H generality) Arrange code to be
consistent with the static branch prediction algorithm: make the fall-through code
following a conditional branch be the likely target for a branch with a forward target, and
make the fall-through code following a conditional branch be the unlikely target for a
branch with a backward target. 2-16

Assembly/Compiler Coding Rule 4. (L impact, MH generality) Do not use directional
branch hintsif it is possible to position code to be consistent with the static branch
prediction algorithm 2-18.

Assembly/Compiler Coding Rule 5. Use directional branch hints only in the case if the
probability of the branch being taken in the prescribed direction is greater than 50%. Use
code positioning to adhere to the static prediction algorithm wherever possible. 2-18

Assembly/Compiler Coding Rule 6. (MH impact, MH generality) Near calls must be
matched with near returns, and far calls must be matched with far returns. Pushing the
return address on the stack and jumping to the routine to be called is not recommended
since it creates a mismatch in calls and returns. 2-19

Assembly/Compiler Coding Rule 7. (MH impact, MH generality) Selectivelyinlinea
function where doing so decreases code size, or if the function is small and the call siteis
frequently executed. 2-19

Assembly/Compiler Coding Rule 8. (H impact, M generality) Do not inline a function
if doing so increases the working set size beyond what will fit in the trace cache. 2-19

Assembly/Compiler Coding Rule 9. (ML impact, ML generality) If there are more
than 16 nested calls and returnsin rapid succession, then consider transforming the
program, for example, with inline, to reduce the call depth. 2-19

2-68

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 10. (ML impact, ML generality) Favor inlining
small functions that contain branches with poor prediction rates. If a branch
misprediction resultsin a RETURN being prematurely predicted as taken, a performance
penalty may be incurred. 2-19

Assembly/Compiler Coding Rule 11. (M impact, MH generality) If the average
number of total iterationsislessthan or equal to 100, use a forward branch to exit the
loop. 2-19

Assembly/Compiler Coding Rule12. (H impact, M generality) Unroll small loops until
the overhead of the branch and the induction variable accounts, generally, for less than
about 10% of the execution time of the loop. 2-20

Assembly/Compiler Coding Rule 13. (H impact, M generality) Avoid unrolling loops
excessively, as this may thrash the TC. 2-21

Assembly/Compiler Coding Rule 14. (M impact, M generality) Unroll loops that are
frequently executed and that have a predictable number of iterations to reduce the number
of iterationsto 16 or fewer, unless this increases code size so that the working set no
longer fitsinthe trace cache. If the loop body contains more than one conditional branch,
then unroll so that the number of iterationsis 16/(# conditional branches). 2-21

Assembly/Compiler Coding Rule 15. (H impact, H generality) Align data on natural
operand size address boundaries 2-23

Assembly/Compiler Coding Rule 16. (H impact, H generality) Promote variables to
registers where profitable. 2-25

Assembly/Compiler Coding Rule17. (MH impact, H generality) Eliminate redundant
loads. 2-25

Assembly/Compiler Coding Rule 18. (H impact, M generality) Pass parametersin
registersinstead of on the stack where possible. 2-25

Assembly/Compiler Coding Rule 19. (H impact, M generality) A load that forwards
from a store must have the same address start point and therefore the same alignment as
the store data. 2-27

Assembly/Compiler Coding Rule 20. (H impact, M generality) The data of a load
which is forwarded from a store must be completely contained within the store data. 2-27

Assembly/Compiler Coding Rule 21. (H impact, ML generality) If it is necessary to
extract a non-aligned portion of stored data, read out the smallest aligned portion that
completely contains the data and shift/mask the data as necessary. The penalty for not
doing thisis much higher than the cost of the shifts. 2-27

2-69

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 22. (MH impact, ML generality) Avoid several
small loads after large stores to the same area of memory by using a single large read and
register copies as needed. 2-27

Assembly/Compiler Coding Rule 23. (H impact, M generality) Space out loads from
the store that forwards data to them. Note that placing intervening instructions between
the load and store does not guarantee separation in time. 2-30

Assembly/Compiler Coding Rule 24. (ML impact, M generality) If aroutineis small,
space apart the loads and stores that manage registers temporarily stored on the stack by
re-loading the registers in the same order that they were stored; that is, replace pushes
and pops with loads and stores, with the stores in the reverse order of pops. 2-30

Assembly/Compiler Coding Rule 25. (H impact, MH generality) Whereit is possible
to do so without incurring other penalties, prioritize the allocation of variables to
registers, asin register allocation and for parameter passing, so asto minimize the
likelihood and impact of store- forwarding problems. Try not to store-forward data
generated from a long latency instruction, e.g. mul, div. Avoid store-forwarding data for
variables with the shortest store-load distance. Avoid store-forwarding data for variables
with many and/or long dependence chains, and especially avoid including a store forward
on a loop-carried dependence chain. 2-30

Assembly/Compiler Coding Rule 26. (H impact, M generality) Try to arrange data
structures such that they permit sequential access. 2-33

Assembly/Compiler Coding Rule 27. (H impact, M generality) If 64-bit data is ever
passed as a parameter or allocated on the stack, make sure that the stack is aligned to an
8-byte boundary. 2-34

Assembly/Compiler Coding Rule 28. (H impact, MH generality) Lay out data or order
computation to avoid having cache lines that have linear addresses that are a multiple of
64KB apart in the same working set. Avoid having more than 4 cache lines that are some
multiple of 2KB apart in the same first-level cache working set, and avoid having more
than 8 cache lines that are some multiple of 32KB apart in the same second-level cache
working set. Avoid having a store followed by a non-dependent load with addresses that
differ by a multiple of 16KB. 2-36

Assembly/Compiler Coding Rule 29. (M impact, L generality) If (hopefully read-only)
data must occur on the same page as code, avoid placing it immediately after an indirect
jump. For example, follow an indirect jump with its mostly likely target, and place the
data after an unconditional branch. 2-37

2-70

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 30. (H impact, L generality) Always put code and
data on separate pages. Avoid self-modifying code wherever possible. If codeisto be
modified, try to do it all at once and make sure the code that performs the modifications
and the code being modified are on separate pages, or at least in separate 1K regions.
2-37

Assembly/Compiler Coding Rule 31. (H impact, L generality) If an inner loop writes
to more than four arrays, apply loop fission to break up the body of the loop such that only
four arrays are being written to in each iteration. 2-37

Assembly/Compiler Coding Rule 32. (M impact, H generality) If the body of a
conditional isnot likely to be executed, it should be placed in another part of the program.
If it is highly unlikely to be executed and code locality is an issue, the body of the
conditional should be placed on a different code page. 2-41

Assembly/Compiler Coding Rule 33. (H impact, M generality) Minimize changes to
bits 8-12 of the floating point control word. Changing among more than two values of
these bits (precision, rounding and infinity control) leads to delays that are on the order of
the pipeline depth. 2-46

Assembly/Compiler Coding Rule 34. (H impact, L generality) Minimize the number of
changesto the rounding mode. Do not use changes in the rounding mode to implement the
floor and ceiling functionsiif thisinvolves a total of more than two values of the set of
rounding, precision and infinity bits. 2-48

Assembly/Compiler Coding Rule 35. (H impact, L generality) Minimize the number of
changes to the precision mode. 2-49

Assembly/Compiler Coding Rule 36. (M impact, M generality) Usef xch only where
necessary to increase the effective name space. 2-50

Assembly/Compiler Coding Rule 37. (M impact, M generality) Use Sreaming SMD
Extensions 2 or Sreaming SMD Extensions unless you need an x87 feature. Use x87
floating-point adds if the ratio of floating-point adds to the number of floating-point
mul ti pliesishigh. 2-51

Assembly/Compiler Coding Rule 38. (M impact, L generality) Try to use 32-bit
operands rather than 16-bit operandsfor fi | d. However, do not do so at the expense of
introducing a store forwarding problem by writing the two halves of the 32-bit memory
operand separately. 2-52

2-71

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 39. (ML impact, M generality) Avoid using complex
instructions (for example, ent er, | eave, or | oop) that generally have more than four
pops and require multiple cycles to decode. Use sequences of simple instructions instead.
2-53

Assembly/Compiler Coding Rule40. (ML impact, M generality) If anl ea instruction
which uses the scaled index is on the critical path, the sequence with the adds may be
better, but if code density and bandwidth out of the trace cache are the critical factor, then
the | ea instruction should be used. 2-54

Assembly/Compiler Coding Rule 41. (M impact, H generality) i nc and dec
instructions should be replaced with an add or sub instruction, because add and sub
overwrite all flags. 2-54

Assembly/Compiler Coding Rule 42. (M impact, M generality) Ifashi ft isona
critical path, replace it by a sequence of up to three adds. If its latency is not critical, use
theshi ft instead because it produces fewer lops. 2-54

Assembly/Compiler Coding Rule 43. (ML impact, L generality) Avoid r ot at e by
register or r ot at e by immediate instructions. If possible, replacewitharot ate by 1
instruction. 2-54

Assembly/Compiler Coding Rule 44. (M impact, MH generality) Replace integer
multiplies by a small constant with two or more add and | ea instructions, especially
when these multiplicationsis part of a dependence chain. 2-55

Assembly/Compiler Coding Rule 45. (ML impact, L generality) Usecdwor cdq
instead of ashi ft and a nove. Replace these with an xor whenever AX or EAX is known
to be positive. 2-55

Assembly/Compiler Coding Rule 46. (M impact, MH generality) Break dependences
on portions of registers between instructions by operating on 32-bit registers instead of
partial registers. For moves, this can be accomplished with 32-bit moves or by using
movzx. 2-56

Assembly/Compiler Coding Rule 47. (M impact, M generality) Try to use zero
extension or operate on 32-bit operands instead of using moves with sign extension. 2-57

Assembly/Compiler Coding Rule 48. (ML impact, M generality) Avoid placing
instructions that use 32-bit immediates which cannot be encoded as a sign-extended
16-bit immediate near each other. Try to schedule pops that have no immediate
immediately before or after pops with 32-bit immediates. 2-57

2-72

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 49. (M impact, ML generality) Use xor, sub, or
pxor to set aregister to 0, or to break a fal se dependence chain resulting from re-use of
registers. In contexts where the condition codes must be preserved, move 0 into the
register instead. This requires more code space than using xor and sub, but avoids
setting the condition codes. 2-58

Assembly/Compiler Coding Rule 50. (ML impact, M generality) Usethet est
instruction instead of and or cnp if possible. 2-58

Assembly/Compiler Coding Rule51. (ML impact, M generality) Eliminate
unnecessary compare with zero instructions by using the apporpriate conditional jump
instruction when the flags are already set by a preceding arithmetic instruction. If
necessary, useat est instruction instead of a compare. Be certain that any code
transformations made do not introduce problems with overflow. 2-59

Assembly/Compiler Coding Rule 52. (M impact, ML generality) Avoid introducing
dependences with partial floating point register writes, e.g. fromthe movsd xmr eg1,
xmr eg2 instruction. Usethe novapd xmregl, xmmrveg?2 instruction instead. 2-59

Assembly/Compiler Coding Rule 53. (ML impact, L generality) Instead of using
movupd xmregl, mem for aunaligned 128-bit load, use novsd xmmregl, nmem
movsd xnmmreg2, nmem+8; unpckl pd xmmregl, xmmreg2. If the additional register
isnot available, then usemovsd xmregl, mem novhpd xmregl, nen¥8. 2-60

Assembly/Compiler Coding Rule 54. (M impact, ML generality) Instead of using
movupd mem xmmr egl for a store, use novsd mem xmmregl; unpckhpd
xmregl, xmregl; novsd mem+8, xmmregl instead. 2-60

Assembly/Compiler Coding Rule 55. (M impact, MH generality) In routines that do
not need EBP and that do not have called routines that modify ESP, use ESP as the base
register to free up EBP. This optimization does not apply in the following cases: a routine
is called that leaves ESP modified upon return, for example, al | oca; routinesthat rely on
EBP for structured or C+ +-style exception handling; routines that useset j np and

| ongj np; and routines that rely on EBP debugging. 2-60

Assembly/Compiler Coding Rule 56. (M impact, ML generality) Instead of explicitly
loading the memory operand into a register and then operating on it,reduce register
pressure by using the memory operand directly, if that memory operand is not reused
soon. 2-61

Assembly/Compiler Coding Rule57. (ML impact, M generality) Give preference to
adding a register to memory (memory is the destination) instead of adding memory to a
register. 2-61

2-73

Intel Pentium 4 Processor Optimization General Optimization Guidelines 2

Assembly/Compiler Coding Rule 58. (M impact, MH generality) Calculate store
addresses as early as possible to avoid having stores block loads. 2-62

Assembly/Compiler Coding Rule 59. (H impact, MH generality) For small loops,
placing loop invariantsin memory is better than spilling loop-carried dependencies. 2-62

Tuning Suggestions

Tuning Suggestion 1. Rarely, a performance problem may be noted due to executing data
on a code page as instructions. The only condition where thisis very likely to happen is
following an indirect branch that is not resident in the trace cache. Only if a performance
problemis clearly due to this problem, try moving the data elsewhere, or inserting an
illegal opcode or a pause instruction immediately following the indirect branch. The
latter two alter native may degrade performance in some circumstances. 2-37

Tuning Suggestion 2. If aload is found to miss frequently, either insert a prefetch before
it, or, if issue bandwidth is a concern, move the load up to execute earlier. 2-40

2-74

Coding

for SMD Architectures 3

The Intel Pentium 4 processor includes support for Streaming SIMD Extensions 2,
Streaming SIMD Extensions technology, and MM X technology. The combination of
these single-instruction, multiple-data (SIMD) technologies will enable the
development of advanced multimedia, signal processing, and modeling applications.
To take advantage of the performance opportunities presented by these new
capabilities, take into consideration the following:

Ensure that your processor supports MM X technology, Streaming SIMD
Extensions (SSE), and Streaming SIMD Extensions 2 (SSE2).

Ensure that your operating system supports MM X technology and SSE (OS
support for SSE2 is the same as OS support for SSE).

Employ al of the optimization and scheduling strategies described in this book.

Use stack and data alignment techniques to keep data properly aligned for efficient
memory use.

Utilize the cacheability instructions offered by SSE and SSE2.

This chapter gives an overview of the capabilities that allow you to better understand
SIMD features and develop applications utilizing SIMD features of MM X technology,
SSE, and SSE2.

3-1

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Checking for Processor Support of SIMD Technologies

This section shows how to check whether a processor supports MM X technol ogy,
SSE, or SSE2. Once this check has been made, the appropriate SIMD technology can
be included in your application in three ways:

1. Check for the SIMD technology during installation. If the desired SIMD
technology is available, the appropriate DLLs can beinstalled.

2. Check for the SIMD technology during program execution and install the proper
DLLsat runtime. Thisis effective for programs that may be executed on different
machines.

3. Create a“fat” binary that includes multiple versions of routines; version that use
the SIMD technology and versions that do not. Check for the SIMD technology
during program execution and run the appropriate versions of theroutines. Thisis
also effective for programs that may be executed on different machines.

Checking for MMX Technology Support

Before you start coding with MM X technology, check if MM X technology is available
on your system. Use the cpui d instruction to check the feature flagsin the edx register.
If cpui d returns bit 23 set to 1 in the feature flags, the processor supports MM X
technology. Use the code segment in Example 3-1 to load the feature flags in edx and
test the result for the existence of MM X technology.

Example 3-1 Identification of MMX Technology with cpui d

.identify existence of cpuid instruction

i dentify processor

nov eax, 1 ; request for feature flags
cpui d ; OFh, 0A2h cpuid instruction
test edx, 00800000h ; is MW technol ogy bit (bit

; 23)in feature flags equal to 1
jnz Found

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

For more information on cpui d see, Intel Processor |dentification with CPUID
Instruction, order number 241618.

Checking for Streaming SIMD Extensions Support

Checking for support of Streaming SIMD Extensions (SSE) on your processor is
similar to doing the same for MM X technology, but you must also check whether your
operating system (OS) supports SSE. Thisis because the OS needs to manage saving
and restoring the new state introduced by SSE for your application to properly
function.

To check whether your system supports SSE, follow these steps:

1. Check that your processor supports the cpui d instruction and is a Pentium I11 or
later processor.

2. Check the feature bits of cpui d for SSE existence.
3. Check for OS support for SSE.

Example 3-2 shows how to find the SSE feature bit (bit 25) in the cpui d feature flags.

Example 3-2 Identification of SSE with cpui d

.identify existence of cpuid instruction
i dentify processor

nov eax, 1 ; request for feature flags

cpui d ; OFh, 0A2h cpuid instruction

test EDX, 002000000h ; bit 25 in feature flags equal to 1
j nz Found

To find out whether the operating system supports SSE, simply execute a SSE
instruction and trap for the exception if one occurs. An invalid opcode will be raised by
the operating system and processor if either isnot enabled for SSE. Catching the
exception in asimple try/except clause (using structured exception handling in C++)
and checking whether the exception code is an invalid opcode will give you the
answer. See Example 3-3.

3-3

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-3 Identification of SSE by the OS

bool OSSupport Check() {
_try {
__asm xorps xmD, xmD ; Stream ng S| MD Ext ension
}
_except (EXCEPTI ON_EXECUTE_HANDLER) {
i f (_exception_code()==STATUS_| LLEGAL_| NSTRUCTI ON)
/* SSE not supported */
return (false);
}
/* SSE are supported by OS */
return (true);

}

Checking for Streaming SIMD Extensions 2 Support

Checking for support of SSE2 on your processor is similar to that of SSE in that you
must also check whether your operating system (OS) supports SSE. The OS
requirements for SSE2 Support are the same as the requirements for SSE. To check
whether your system supports SSE2, follow these steps:

1. Check that your processor hasthe cpui d instruction and is the Pentium 4
processor or later.

2. Check the feature bits of cpui d for SSE2 technology existence.
3. Check for OS support for SSE.

Example 3-2 shows how to find the SSE2 feature bit (bit 25) in the cpui d feature flags.

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-4 Identification of SSE2 with cpui d

.identify existence of cpuid instruction
i dentify processor

1

nov eax, 1 ; request for feature flags

cpui d ; OFh, 0A2h cpuid instruction

test EDX, 004000000h ; bit 26 in feature flags equal to 1
j nz Found

SSE2 require the same support from the operating system as SSE. To find out whether
the operating system supports SSE2, simply execute a SSE2 instruction and trap for
the exception if one occurs. An invalid opcode will be raised by the operating system
and processor if either is not enabled for SSE2. Catching the exception in asimple
try/except clause (using structured exception handling in C++) and checking whether
the exception code is an invalid opcode will give you the answer. See Example 3-3.

Example 3-5 Identification of SSE2 by the OS

bool OSSupport Check() {
_try {
__asm xorpd xmrD, xm0D ; SSE2}
_except (EXCEPTI ON_EXECUTE_HANDLER) {
if _exception_code()==STATUS | LLEGAL_| NSTRUCTI ON)
/* SSE2not supported */
return (false);
}
[* SSE2 are supported by OS */
return (true);

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Considerations for Code Conversion to SIMD Programming

The VTune™ Performance Enhancement Environment CD providestoolsto aid in the
evaluation and tuning. But before you start implementing them, you need to know the
answers to the following questions:

1

© 0~ DN

Will the current code benefit by using MM X technology, Streaming SIMD
Extensions, or Streaming SIMD Extensions 2?

Is this code integer or floating-point?

What integer word size or floating-point precision do | need?
What coding techniques should | use?

What guidelines do | need to follow?

How should | arrange and align the datatypes?

Figure 3-1 provides aflowchart for the process of converting code to MM X
technology, Streaming SIMD Extensions, or Streaming SIMD Extensions 2.

3-6

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Figure 3-1 Converting to Streaming SIMD Extensions Chart

Identify Hot Spots in Code

Code benefits

Can convert to
Integer?

No

Can convert to
Single-precision?

from SIMD?

Yes

Integer or
floating-point?

o

Integer

A

Change to use
SIMD Integer

Change to use

A

Single Precision

> STOP <

If possible, re-arrange data
for SIMD efficiency

No

g v
Range or Align data structures
Precision ¥
No

Convert the code to use
SIMD Technologies

v

Follow general coding
guidelines and SIMD coding
guidelines

v

Use memory optimizations
and prefetch if appropriate

v

Schedule instructions to
optimize performance

3-7

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

To use any of the SIMD technologies optimally, you must evaluate the following
situations in your code:

* fragments that are computationally intensive

e fragments that are executed often enough to have an impact on performance

e fragments that require integer computations with little data-dependent control flow
e fragments that require floating-point computations

e fragmentsthat require help in using the cache hierarchy efficiently.

Identifying Hot Spots

To optimize performance, you can use the VTune™ Performance Analyzer to find the
sections of code that occupy most of the computation time. Such sections are called the
hotspots. For details on the VTune analyzer, see “V Tune™ Performance Analyzer” in
Appendix A. The VTune analyzer provides a hotspots view of a specific module to
help you identify sectionsin your code that take the most CPU time and that have
potential performance problems. For more explanation, see section “Using Sampling
Analysisfor Optimization” in Appendix A, which includes an example of a hotspots
report. The hotspots view helps you identify sections in your code that take the most
CPU time and that have potential performance problems.

The VTune analyzer enables you to change the view to show hotspots by memory
location, functions, classes, or sourcefiles. You can double-click on ahotspot and open
the source or assembly view for the hotspot and see more detailed information about
the performance of each instruction in the hotspot.

The VTune analyzer offers focused analysis and performance data at all levels of your
source code and can also provide advice at the assembly language level. The code
coach analyzes and identifies opportunities for better performance of C/C++, Fortran
and Java* programs, and suggests specific optimizations. Where appropriate, the
coach displays pseudo-code to suggest the use of highly optimized intrinsics and
functions in the Intel® Performance Library Suite. Because VTune anayzer is
designed specifically for al of the Intel architecture (IA)-based processors, including
the Pentium 4 processor, it can offer these detailed approaches to working with 1A. See
“Code Coach Optimizations” in Appendix A for more details and example of a code
coach advice.

3-8

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Determine If Code Benefits by Conversion to SIMD Execution

I dentifying code that benefits by using SIMD technologies can be time-consuming and
difficult. Likely candidates for conversion are applications that are highly computation
intensive, such as the following:

* gpeech compression algorithms and filters
® gpeech recognition agorithms

* video display and capture routines

* rendering routines

* 3D graphics (geometry)

* image and video processing agorithms

* gpatia (3D) audio

* physical modeling (graphics, CAD)

* workstation applications

* encryption algorithms

Generally, good candidate code is code that contains small-sized repetitive loops that
operate on sequential arrays of integers of 8 or 16 bits for MM X technology,
single-precision 32-bit floating-point data for SSE technology, or double precision
64-bit floating-point data for SSE2 (integer and floating-point data items should be
sequential in memory). The repetitiveness of these loops incurs costly application
processing time. However, these routines have potential for increased performance
when you convert them to use one of the SIMD technologies.

Once you identify your opportunities for using a SIMD technology, you must evaluate
what should be done to determine whether the current algorithm or amodified one will
ensure the best performance.

3-9

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Coding Techniques

The SIMD features of SSE2, SSE, and MM X technology require new methods of
coding algorithms. One of them is vectorization. Vectorization is the process of
transforming sequentially-executing, or scalar, code into code that can execute in parallel,
taking advantage of the SIMD architecture parallelism. This section discusses the coding
techniques available for an application to make use of the SIMD architecture.

To vectorize your code and thus take advantage of the SIMD architecture, do the
following:

* Determineif the memory accesses have dependencies that would prevent parallel
execution

* “Strip-mine’ the loop to reduce the iteration count by the length of the SIMD
operations (for example, four for single-precision floating-point SIMD, eight for
16-bit integer SIMD on the XMM registers)

* Re-codethe loop with the SIMD instructions
Each of these actionsis discussed in detail in the subsequent sections of this chapter.

These sections also discuss enabling automatic vectorization viathe Intel C++
Compiler.

Coding Methodologies

Software devel opers need to compare the performance improvement that can be
obtained from assembly code versus the cost of those improvements. Programming
directly in assembly language for atarget platform may produce the required
performance gain, however, assembly code is not portable between processor
architectures and is expensive to write and maintain.

Performance objectives can be met by taking advantage of the different SIMD
technologies using high-level languages aswell as assembly. The new C/C++ language
extensions designed specifically for SSE2, SSE, and MM X technology help make this
possible.

3-10

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Figure 3-2 illustrates the trade-offs involved in the performance of hand- coded
assembly versus the ease of programming and portability.

Figure 3-2 Hand-Coded Assembly and High-Level Compiler Performance Trade-offs

4 N
Assembly Instrinsics
g \. J Automatic
= Y Vecorization
o
@
a C/C++/Fortran
- @ J
— @

Ease of Programming/Portability — =—

The examples that follow illustrate the use of coding adjustments to enable the
algorithm to benefit from the SSE. The same techniques may be used for
single-precision floating-point, double-precision floating-point, and integer data under
SSE2, SSE, and MM X technology.

Asabasisfor the usage model discussed in this section, consider a simple loop shown
in Example 3-6.

Example 3-6 Simple Four-Iteration Loop

void add(float *a, float *b, float *c)
{
int i;
0; i < 4; i++) {
a[i] + b[i];

for (i

cli]

Inte|® 3-11

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Note that the loop runsfor only four iterations. Thisallows asimple replacement of the
code with Streaming SIMD Extensions.

For the optimal use of the Streaming SIMD Extensions that need data alignment on the
16-byte boundary, all examplesin this chapter assume that the arrays passed to the
routine, a, b, c, are aligned to 16-byte boundaries by a calling routine. For the methods
to ensure this alignment, please refer to the application notes for the Pentium 4
processor available at http://devel oper.intel.com.

The sections that follow provide details on the coding methodologies: inlined
assembly, intrinsics, C++ vector classes, and automatic vectorization.

Assembly

Key loops can be coded directly in assembly language using an assembler or by using
inlined assembly (C-asm) in C/C++ code. The Intel compiler or assembler recognize
the new instructions and registers, then directly generate the corresponding code. This
model offers the opportunity for attaining greatest performance, but this performance
is not portable across the different processor architectures.

Example 3-7 shows the Streaming SIMD Extensions inlined assembly encoding.

Example 3-7 Streaming SIMD Extensions Using Inlined Assembly Encoding

void add(float *a, float *b, float *c)

{

__asm{
nov eax, a
nov edx, b
nov ecx, c

novaps xmD, XMMAORD PTR [eax]
addps xmD, XMMAORD PTR [edx]
novaps XMMAORD PTR [ecx], xmmD

3-12

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Intrinsics

Intrinsics provide the access to the | SA functionality using C/C++ style coding instead
of assembly language. Intel has defined three sets of intrinsic functions that are
implemented in the Intel® C++ Compiler to support the MM X technology, Streaming
SIMD Extensions and Streaming SIMD Extensions 2. Four new C data types,
representing 64-bit and 128-bit objects are used as the operands of these intrinsic
functions. __n64 isused for MM X integer SIMD, __ ni28 is used for single-precision
floating-point SIMD, __nt.28i isused for Streaming SIMD Extensions 2 integer SIMD
and __n28d isused for double precision floating-point SIMD. These types enable the
programmer to choose the implementation of an algorithm directly, while allowing the
compiler to perform register allocation and instruction scheduling where possible.
These intrinsics are portable among al Intel architecture-based processors supported
by a compiler. The use of intrinsics allows you to obtain performance close to the
levels achievable with assembly. The cost of writing and maintaining programs with
intrinsicsis considerably less. For a detailed description of the intrinsics and their use,
refer to the Intel C++ Compiler User’s Guide.

Example 3-8 shows the loop from Example 3-4 using intrinsics.

Example 3-8 Simple Four-Iteration Loop Coded with Intrinsics

#i ncl ude <xmmintrin. h>
void add(float *a, float *b, float *c)

{
_m28 t0, t1;
t0 = _mmload_ps(a);
tl = _mmload_ps(b);
t0 = _mm.add_ps(t0, t1);
_mmstore_ps(c, t0);
}

3-13

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Theintrinsics map one-to-one with actual Streaming SIMD Extensions assembly code.
The xmmi nt ri n. h header file in which the prototypes for the intrinsics are defined is
part of the Intel C++ Compiler included with the VTune™ Performance Enhancement
Environment CD.

Intrinsics are also defined for the MM X technology ISA. These are based onthe __n64
data type to represent the contents of an nmregister. You can specify valuesin bytes,
short integers, 32-bit values, or as a 64-bit object.

Theintrinsic data types, however, are not abasic ANSI C datatype, and therefore you
must observe the following usage restrictions:

* Use intrinsic datatypes only on the left-hand side of an assignment as areturn
value or as a parameter. You cannot use it with other arithmetic expressions (for
eXa.rT‘pI e’ u+u, u>>u .

* Use intrinsic datatype objects in aggregates, such as unions to access the byte
elements and structures; the address of an __n64 object may be also used.

* Useintrinsic datatype data only with the MM X technology intrinsics described in
this guide.

For complete details of the hardware instructions, see the Intel Architecture MMX
Technology Programmer’s Reference Manual. For descriptions of data types, see the
Intel Architecture Software Developer's Manual, Volume 2: Instruction Set Reference
Manual.

Classes

A set of C++ classes has been defined and availablein Intel C++ Compiler to provide
both a higher-level abstraction and more flexibility for programming with MM X
technology, Streaming SIMD Extensions and Streaming SIMD Extensions 2. These
classes provide an easy-to-use and flexible interface to the intrinsic functions, alowing
developers to write more natural C++ code without worrying about which intrinsic or
assembly language instruction to use for a given operation. Since the intrinsic
functions underlie the implementation of these C++ classes, the performance of
applications using this methodology can approach that of one using the intrinsics.
Further details on the use of these classes can be found in the Intel C++ Class
Librariesfor SMD Operations User’s Guide, order number 693500.

3-14

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-9 shows the C++ code using a vector class library. The example assumes
the arrays passed to the routine are already aligned to 16-byte boundaries.

Example 3-9 C++ Code Using the Vector Classes

#i ncl ude <fvec. h>
void add(float *a, float *b, float *c)

{
F32vec4 *av=(F32vec4 *) a;

F32vec4 *bv=(F32vec4 *) b;
F32vec4 *cv=(F32vec4 *) c;

*cv=*av + *hv;

}

Here, f vec. h isthe class definition file and F32vec4 isthe class representing an
array of four floats. The “+” and “=" operators are overloaded so that the actual
Streaming SIMD Extensions implementation in the previous exampleis abstracted out,
or hidden, from the developer. Note how much more this resembles the original code,
allowing for simpler and faster programming.

Again, the exampleis assuming the arrays, passed to the routine, are already aligned to
16-byte boundary.

Automatic Vectorization

The Intel C++ Compiler provides an optimization mechanism by which simple loops,
such asin Example 3-6 can be automatically vectorized, or converted into Streaming
SIMD Extensions code. The compiler uses similar techniques to those used by a
programmer to identify whether aloop is suitable for conversion to SIMD. This
involves determining whether the following might prevent vectorization:

* thelayout of the loop and the data structures used
* dependencies amongst the data accesses in each iteration and across iterations

Once the compiler has made such a determination, it can generate vectorized code for
the loop, allowing the application to use the SIMD instructions.

3-15

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

The cavesat to thisis that only certain types of loops can be automatically vectorized,
and in most cases user interaction with the compiler is needed to fully enable this.

Example 3-10 shows the code for automatic vectorization for the simple four-iteration
loop (from Example 3-6).

Example 3-10 Automatic Vectorization for a Simple Loop

void add (float *restrict a,
float *restrict b,
float *restrict c)

int i;
for (i =0; i <4; i++) {
cli] =a[i] + b[i];

Compilethiscode using the- Qax and - Q- est ri ct switchesof the Intel C++ Compiler,
version 4.0 or later.

Therestrict qualifier in the argument list is necessary to let the compiler know that
there are no other aliases to the memory to which the pointers point. In other words,
the pointer for which it is used, provides the only means of accessing the memory in
question in the scope in which the pointers live. Without this qualifier, the compiler
will not vectorize the loop because it cannot ascertain whether the array referencesin
the loop overlap, and without this information, generating vectorized code is unsafe.

Refer to the Intel® C++ Compiler User’s Guide, for more details on the use of
automatic vectorization.

Stack and Data Alignment

To get the most performance out of code written for SIMD technol ogies data should be
formatted in memory according to the guidelines described in this section. Assembly
code with an unaligned accesses is alot slower than an aligned access.

intel ® 3-16

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Alignment and Contiguity of Data Access Patterns

The new 64-bit packed data types defined by MM X technology, and the 128-bit
packed data types for Streaming SIMD Extensions and Streaming SIMD Extensions 2
create more potential for misaligned data accesses. The data access patterns of many
algorithms are inherently misaligned when using MM X technology and Streaming
SIMD Extensions.

Using Padding to Align Data

However, when accessing SIMD data using SIMD operations, access to data can be
improved simply by achange in the declaration. For example, consider a declaration of
astructure, which represents a point in space plus an attribute.

typedef struct { short x,y,z; char a} Point;

Point pt[N;
Assume we will be performing a number of computations on x, y, z in three of the four
elements of a SIMD word; see the *Data Structure Layout” section for an example.

Evenif thefirst element in array pt isaligned, the second element will start 7 bytes
later and not be aligned (3 shorts at two bytes each plus a single byte = 7 bytes).

By adding the padding variable pad, the structure is now 8 bytes, and if the first
element isaligned to 8 bytes (64 bits), all following elements will also be aligned. The
sample declaration follows:

typedef struct { short x,y,z; char a; char pad; } Point;

Point pt[N;

Using Arrays to Make Data Contiguous

In the following code,
for (i=0; i<N, i++) pt[i].y *= scale;

the second dimension y needs to be multiplied by a scaling value. Here the f or loop
accesses each y dimension in the array pt thus disallowing the access to contiguous
data. This can degrade the performance of the application by increasing cache misses,
by achieving poor utilization of each cache line that is fetched, and by increasing the
chance for accesses which span multiple cache lines.

3-17

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

The following declaration allows you to vectorize the scaling operation and further
improve the alignment of the data access patterns:

short ptx[N, pty[N, ptz[N;
for (i=0; i<N, i++) pty[i] *= scale;

With the SIMD technology, choice of data organization becomes more important and
should be made carefully based on the operations that will be performed on the data. In
some applications, traditional data arrangements may not lead to the maximum
performance.

A simple example of thisisan FIR filter. An FIR filter is effectively avector dot
product in the length of the number of coefficient taps.

Consider the following code:

(data [j] *coeff [0] + data [j+1]*coeff [1]+...+data []+num of
taps-1]*coeff [num of taps-1]),

If in the code above the filter operation of data element i isthe vector dot product that
begins at data element j , then the filter operation of data element i +1 begins at data
element j +1.

Assuming you have a 64-bit aligned data vector and a 64-bit aligned coefficients
vector, the filter operation on the first data element will be fully aligned. For the
second data element, however, access to the data vector will be misaligned. For an
example of how to avoid the misalignment problem in the FIR filter, please refer to the
application notes available at

http://devel oper.intel.com/software/idap/processor/ia32/pentiumiii/sse.htm.

Duplication and padding of data structures can be used to avoid the problem of data
accesses in agorithms which are inherently misaligned. The * Data Structure L ayout”
section discusses further trade-offs for how data structures are organized.

A CAUTION. The duplication and padding technique overcomes the
misalignment problem, thus avoiding the expensive penalty for
misaligned data access, at the cost of increasing the data size.
When devel oping your code, you should consider this tradeoff and
use the option which gives the best performance.

3-18

http://developer.intel.com/software/idap/processor/ia32/pentiumiii/sse.htm

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Stack Alignment For 128-bit SIMD Technologies

Data Al

For best performance, the Streaming SIMD Extensions and Streaming SIMD
Extensions 2 require their memory operands to be aligned to 16-byte (16B)
boundaries. Unaligned data can cause significant performance penalties compared to
aligned data. However, the existing software conventions for |A-32 (st dcal | , cdecl ,
fast cal I) asimplemented in most compilers, do not provide any mechanism for
ensuring that certain local data and certain parameters are 16-byte aligned. Therefore,
Intel has defined anew set of 1A-32 software conventions for alignment to support the
new _ ni28* datatypes (__nmi28, __nml28d, and __ ni28i) that meet the following
conditions:

* Functions that use Streaming SIMD Extensions or Streaming SIMD Extensions 2
data need to provide a 16-byte aligned stack frame.

* The__nmi28* parameters need to be aligned to 16-byte boundaries, possibly
creating “holes’ (due to padding) in the argument block

These new conventions presented in this section as implemented by the Intel C++
Compiler can be used as a guideline for an assembly language code as well. In many
cases, this section assumes the use of the __mi2g* datatypes, as defined by the Intel
C++ Compiler, which represents an array of four 32-bit floats.

For more details on the stack alignment for Streaming SIMD Extensions and SSE2, see
Appendix D, “Stack Alignment”.

ignment for MMX Technology

Many compilers enable alignment of variables using controls. This aligns the
variables’ bit lengths to the appropriate boundaries. If some of the variables are not
appropriately aligned as specified, you can align them using the C algorithm shown in

Example 3-11.

3-19

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-11 C Algorithm for 64-bit Data Alignment

/* Make newp a pointer to a 64-bit aligned array */

/* of NUM ELEMENTS 64-bit el enents. */

doubl e *p, *newp;

p = (doubl e*)nal |l oc (sizeof (double)*(NUM ELEMENTS+1));
newp = (p+7) & (~0x7);

Data Al

The agorithm in Example 3-11 aligns an array of 64-bit elements on a 64-bit
boundary. The constant of 7 is derived from one less than the number of bytesin a
64-bit element, or 8-1. Aligning datain this manner avoids the significant performance
penalties that can occur when an access crosses a cache line boundary.

Another way to improve data alignment is to copy the data into locations that are
aligned on 64-bit boundaries. When the data is accessed frequently, this can provide a
significant performance improvement.

ignment for 128-bit data

Data must be 16-byte aligned when loading to or storing from the 128-bit XMM
registers used by SSE and SSE2 to avoid severe performance penalties at best, and at
worst, execution faults. Although there are move instructions (and intrinsics) to allow
unaligned data to be copied into and out of the XMM registers when not using aligned
data, such operations are much slower than aligned accesses. If, however, the datais
not 16-byte-aligned and the programmer or the compiler does not detect this and uses
the aligned instructions, afault will occur. So, the ruleis: keep the data
16-byte-aligned. Such alignment will also work for MM X technology code, even
though MM X technology only requires 8-byte alignment. The following discussion
and examples describe alignment techniques for Pentium 4 processor as implemented
with the Intel C++ Compiler.

3-20

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Compiler-Supported Alignment

The Intel C++ Compiler provides the following methods to ensure that the datais
aligned.

Alignment by F32vec4 or __nm128 Data Types. When compiler detects F32vec4 or
__ml28 data declarations or parameters, it will force alignment of the object to a
16-byte boundary for both global and local data, as well as parameters. If the
declaration is within a function, the compiler will also align the function’s stack frame
to ensure that local data and parameters are 16-byte-aligned. For details on the stack
frame layout that the compiler generates for both debug and optimized
(“release”-mode) compilations, please refer to the relevant Intel application notesin
the Intel Architecture Performance Training Center provided with the SDK.

The __decl spec(align(16)) specifications can be placed before data declarations to
force 16-byte alignment. Thisis particularly useful for local or global data declarations
that are assigned to 128-bit data types. The syntax for it is

__decl spec(align(integer-constant))

where thei nt eger - const ant isan integral power of two but no greater than 32. For
example, the following increases the alignment to 16-bytes:

__decl spec(align(16)) float buffer[400];
The variable buf f er could then be used asiif it contained 100 objects of type __ni28

or F32vec4. In the code below, the construction of the F32vec4 object, x, will occur
with aligned data.

void foo() {

F32vec4 x = *(__ml28 *) buffer

}
Without the declaration of __decl spec(al i gn(16)), afault may occur.

3-21

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Alignment by Using a uni on Sructure. Preferably, when feasible, auni on can be
used with 128-bit data typesto allow the compiler to align the data structure by default.
Doing sois preferred to forcing alignment with __decl spec(al i gn(16)) because it
exposes the true program intent to the compiler inthat __ni28 datais being used. For

example:
uni on {
float f[400];
__mi28 nf100];
} buffer;

The 16-byte alignment is used by default due to the __n.28 type in the uni on; it isnot
necessary to use __decl spec(al i gn(16)) toforceit.

In C++ (but not in C) it is aso possible to force the alignment of a
cl ass/st ruct /uni on type, asin the code that follows:

struct __decl spec(align(16)) ny_nil28

float f[4];
b

But, if the datain such acl ass is going to be used with the Streaming SIMD
Extensions or Streaming SIMD Extensions 2, it is preferable to use auni on to make
this explicit. In C++, an anonymous uni on can be used to make this more convenient:

class ny_ml28 {

uni on {
_ 28 m
float f[4];
b

}s

In this example, because the uni on is anonymous, the names, mand f , can be used as
immediate member names of my__mi128. Notethat __decl spec(al i gn) has no effect
when applied to acl ass, st ruct, or uni on member in either C or C++.

intel ® 3-22

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Alignment by Using __n64 or doubl e Data. In some cases, for better performance,
the compiler will align routineswith __n64 or doubl e datato 16-bytes by default. The
command-line switch, - Qsf al i gn16, can be used to limit the compiler to only alignin
routines that contain 128-bit data. The default behavior isto use - Gsf al i gn8, which
instructs to align routines with 8- or 16-byte data types to 16-bytes.

For more details, see relevant Intel application notesin the Intel Architecture
Performance Training Center provided with the SDK and the Intel C++ Compiler
User’s Guide.

Improving Memory Utilization

Memory performance can be improved by rearranging data and algorithms for SE 2,
SSE, and MM X technology intrinsics. The methods for improving memory
performance involve working with the following:

e Data structure layout

® Strip-mining for vectorization and memory utilization

* Loop-blocking

Using the cacheability instructions, prefetch and streaming store, also greatly enhance

memory utilization. For these instructions, see Chapter 6, “Optimizing Cache Usage
for Intel Pentium 4 Processors’.

Data Structure Layout

For certain algorithms, like 3D transformations and lighting, there are two basic ways
of arranging the vertex data. The traditional method is the array of structures (AoS)
arrangement, with a structure for each vertex (see Example 3-12). However this
method does not take full advantage of the SIMD technology capabilities.

3-23

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-12 A0S data structure

typedef struct{
float x,vy, z;
int a,b,c;
} Vertex;
Vertex Vertices[NunOX Vertices];

The best processing method for code using SIMD technology isto arrange the datain
an array for each coordinate (see Example 3-13). This data arrangement is called
structure of arrays (SoA).

Example 3-13 SoA data structure

typedef struct{
float X[NumOf Vertices];
float y[NunmOf Vertices];
float z[NumOf Vertices];
int a[NunOf Vertices];
int b[NunOf Vertices];
int c[NunOf Vertices];

} VerticeslList;
VerticesList Vertices;

There are two options for computing datain AoS format: perform operation on the
data asit standsin AoS format, or re-arrange it (swizzle it) into SoA format
dynamically. See Example 3-14 for code samples of each option based on a
dot-product computation.

3-24

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-14 A0S and SoA Code Samples

; The dot product of an array of vectors (Array) and a
; fixed vector (Fixed) is a comon operation in 3D

; lighting operations,

; where Array = (x0,y0,z0), (x1,y1,2z1),...

; and Fi xed = (xF, yF, zF)

; A dot product is defined as the scalar quantity

; d0 = x0*xF + y0O*yF + z0*zF.

;. AoS code
; Al values narked DC are “don’'t-care.”
; In the ACS nodel, the vertices are stored in the

7 Xyz format
nmovaps xm0O, Array ;o xqrm0D = DC, x0, yo0, z0
novaps xnmi, Fixed ;o xmmil = DC, xF, yF, zF
mul ps xmmD, xmml ;o xqm0D = DC, x0*xF, yO*yF, z0*zF
nmovhl ps xmil, xmm0 ;o xmmL = DC, DC, DC, x0*xF
addps xmrl, xmmD ; xnmmD = DC, DC, DC,

; X0*xF+z0*zF
movaps xmg, xmil
shuf ps xm2, xme, 55h ;. xmR = DC, DC, DC, yo*yF
addps m2, xmil ;o xnmml = DC, DC, DC,

; x0*xF+y0*yF+z0* zF
; SOA code

;X = x0, x1, x2, x3
;Y =y0,yl,y2,y3
. Z =120,21,22,23

continued

"Ttel ® 3-25

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-14 AoS and SoA Code Samples (continued)

A = xF, xF, xF, xF

B = yF, yF, yF, yF
C = zF, zF, zF, zF
nmovaps xnmD, X ;o xmqmm0 = x0, x1, x2, x3

novaps xmid, xmD = y0,yl,y2,y3
novaps xmme, xm0 = z0, z1,z2,z3

Y
z
mul ps xmD, A ;o xmmD = x0*xF, x1*xF, x2*xF, x3*xF
B
C

mul ps xm, xmil = yO*yF, yl*yF, y2*yF, y3*xF
nul ps xme, xmR = z0*zF, z1*zF, z2*zF, z3*zF
addps xmmD, xmril

addps xmmD, xmmR2 ;o Xm0 = (x0*xF+yO0*yF+z0* zF) ,

Performing SIMD operations on the original AoS format can require more calculations
and some of the operations do not take advantage of all of the SIMD elements
available. Therefore, this option is generally less efficient.

The recommended way for computing datain AoS format is to swizzle each set of
elementsto SoA format before processing it using SIMD technologies. This swizzling
can either be done dynamically during program execution or statically when the data
structures are generated; see Chapters 4 and 5 for specific examples of swizzling code.
Performing the swizzle dynamically is usually better than using AoS, but is somewhat
inefficient as there is the overhead of extrainstructions during computation.
Performing the swizzle statically, when the data structures are being laid out, is best as
thereis no runtime overhead.

Asmentioned earlier, the SOA arrangement allows more efficient use of the parallelism
of the SIMD technologies because the data is ready for computation in a more optimal
vertical manner: multiplying components x0, x1, x2, x3 by xF, xF, xF, xF using 4
SIMD execution slots to produce 4 unique results. In contrast, computing directly on
A0S data can lead to horizontal operations that consume SIMD execution slots but
produce only a single scalar result as shown by the many “don’t-care” (DC) slotsin

Example 3-14.

3-26

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Use of the SoA format for data structures can also lead to more efficient use of caches
and bandwidth. When the elements of the structure are not accessed with equal
frequency, such aswhen element x, y, z are accessed ten times more often than the
other entries, then SoA not only saves memory, but it also prevents fetching
unnecessary dataitemsa, b, andc.

Example 3-15 Hybrid SoA data structure

NumOf Groups = Nunf Verti ces/ S| MDwi dt h
typedef struct{
float x[SIMDwi dth];
float y[SINMDwW dth];
float z[SI MDwi dth];
} VerticesCoordLi st;
typedef struct{
int a[Sl vDwi dth];
int b[SIMw dth];
int c[SlINvDwi dth];

} VerticesCol orlList;
VerticesCoordLi st VerticesCoord[Nunf G oups] ;
VerticesCol orLi st VerticesCol or[NunOf G oups] ;

Note that SOA can have the disadvantage of requiring more independent memory
stream references. A computation that uses arrays x, y, and z in Example 3-13 would
reguire three separate data streams. This can require the use of more prefetches,
additional address generation calculations, as well as having a greater impact on
DRAM page access efficiency. An alternative, a hybrid SoA approach blends the two
aternatives (see Example 3-15). In this case, only 2 separate address streams are

generated and referenced: one which contains xxxx, yyyy, zzzz, zzzz, . .. and the
other which contains aaaa, bbbb, cccc, aaaa, dddd, Thisalso prevents fetching
|nte|® 3-27

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

unnecessary data, assuming the variablesx, y, z are aways used together; whereas
thevariablesa, b, c would aso used together, but not at the sametimeasx, vy, z.
This hybrid SoA approach ensures:

* dataisorganized to enable more efficient vertical SIMD computation,

* simpler/less address generation than AoS,

* fewer streams, which reduces DRAM page misses,

* useof fewer prefetches, due to fewer streams,

* efficient cache line packing of data elements that are used concurrently.

With the advent of the SIMD technol ogies, the choice of data organization becomes
more important and should be carefully based on the operations to be performed on the
data. Thiswill become increasingly important in the Pentium 4 processor and future
processors. In some applications, traditional data arrangements may not lead to the
maximum performance. Application developers are encouraged to explore different

data arrangements and data segmentation policies for efficient computation. This may
mean using a combination of AoS, SoA, and Hybrid SoA in agiven application.

Strip Mining

Strip mining, aso known as loop sectioning, is aloop transformation technique for
enabling SIMD-encodings of loops, as well as providing a means of improving
memory performance. First introduced for vectorizers, this technique consists of the
generation of code when each vector operation is done for a size less than or equal to
the maximum vector length on a given vector machine. By fragmenting a large loop
into smaller segments or strips, this technique transforms the loop structure twofold:

* |tincreasesthe tempora and spatial locality in the data cache if the data are
reusable in different passes of an algorithm.

* |t reduces the number of iterations of the loop by afactor of the length of each
“vector,” or number of operations being performed per SIMD operation. In the
case of Streaming SIMD Extensions, this vector or strip-length is reduced by 4
times: four floating-point data items per single Streaming SIMD Extensions
single-precision floating-point SIMD operation are processed. Consider

Example 3-16.

3-28

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-16 Pseudo-code Before Strip Mining

typedef struct _VERTEX {
float x, y, z, nx, ny, nz, u, Vv,
} Vertex_rec;

mai n()
{
Vertex_rec v[Nuni;

for (i=0; i<Num i++) {
Transform(v[il);

}

for (i=0; i<Num i++) {
Lighting(v[i]);

The main loop consists of two functions: transformation and lighting. For each object,
the main loop calls atransformation routine to update some data, then callsthe lighting
routine to further work on the data. If the size of array v[Nuni islarger than the cache,
then the coordinates for v[i] that were cached during Transforn(v[i]) will be
evicted from the cache by thetimewedo Li ghti ng(v[i]). Thismeansthat v[i] will
have to be fetched from main memory a second time, reducing performance.

3-29

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-17 Strip Mined Code

mai n()

{
Vertex_rec v[Nun;

for (i=0; i < Num i+=strip_size) {
for (j=i; j < mn(Num i+strip_size); j++) {
Transforn(v[j]);

}

for (j=i; j < mn(Num i+strip_size); j++) {
Lighting(v[j]);

}

Loop B

In Example 3-17, the computation has been strip-mined to asizestri p_si ze. The
valuestrip_si ze ischosen such that st ri p_si ze elements of array v[Nunj fitinto
the cache hierarchy. By doing this, agiven element v[i] brought into the cache by
Transform(v[i]) will still bein the cache when we perform Li ghti ng(v[i]), and
thus improve performance over the non-strip-mined code.

locking

Loop blocking is another useful technique for memory performance optimization. The
main purpose of loop blocking is also to eliminate as many cache misses as possible.
This technique transforms the memory domain of agiven problem into smaller chunks
rather than sequentially traversing through the entire memory domain. Each chunk
should be small enough to fit al the data for a given computation into the cache,
thereby maximizing data reuse. In fact, one can treat loop blocking as strip mining in
two or more dimensions. Consider the code in Example 3-16 and access pattern in
Figure 3-3. The two-dimensional array Aisreferenced in thej (column) direction and
then referenced in thei (row) direction (column-major order); whereas array B is

3-30

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

referenced in the opposite manner (row-major order). Assume the memory layout isin
column-magjor order; therefore, the access strides of array A and B for the code in
Example 3-18 would be 1 and MaX, respectively.

Example 3-18 Loop Blocking

A. Original loop
float Al MAX, MAX], B[MAX, MNAX]
for (i=0; i< MAX; i++) {
for (j=0; j< MAX j++) {
Aliyjl = AL j1 + Blj, 15

}
B. Transformed L oop after Blocking

float Al MAX, MAX], B[MAX, MAX];
for (i=0; i< MAX; i+=block_size) {
for (j=0; j< MAX; j+=block_size) {

for (ii=i; ii<i+block_size; ii++) {
for (jj=j; jj<i+block_size; jj++) {
Alii,jjl = Alii,jjl + Bljj, ii];
}
}

}

For the first iteration of the inner loop, each accessto array B will generate a cache miss. If the
size of onerow of array A, that is, Al 2, 0: MAX- 1], is large enough, by the time the
second iteration starts, each access to array B will always generate a cache miss. For
instance, on thefirst iteration, the cache line containing B[0, 0: 7] will be brought in
when B[0, 0] isreferenced because thef | oat type variableisfour bytes and each
cache line is 32 bytes. Due to the limitation of cache capacity, thisline will be evicted
due to conflict misses before the inner loop reaches the end. For the next iteration of

3-31

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

the outer loop, another cache miss will be generated while referencing B[0, 1] . In this
manner, a cache miss occurs when each element of array B isreferenced, that is, there
isno datareusein the cache at all for array B.

This situation can be avoided if the loop is blocked with respect to the cache size. In
Figure 3-3, abl ock_si ze isselected as the loop blocking factor. Suppose that

bl ock_si ze is8, then the blocked chunk of each array will be eight cache lines

(32 bytes each). In the first iteration of the inner loop, A{ 0, 0: 7] andB[0, 0:7] will
be brought into the cache. B[0, 0: 7] will be completely consumed by the first
iteration of the outer loop. Consequently, B[0, 0: 7] will only experience one cache
miss after applying loop blocking optimization in lieu of eight misses for the original
algorithm. Asillustrated in Figure 3-3, arrays A and B are blocked into smaller
rectangular chunks so that the total size of two blocked A and B chunks is smaller than
the cache size. This allows maximum data reuse.

Figure 3-3 Loop Blocking Access Pattern

A{i, j) access pattern A(i, j) access pattern
: after blocking

> |

!

o < cache
B{1,]) access pattern size

b

B{i,]} access pattern
after blocking

i ntel ® 3-32

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Asone can seg, al the redundant cache misses can be eliminated by applying thisloop
blocking technique. If MAX is huge, loop blocking can also help reduce the penalty from
DTLB (datatranslation look-aside buffer) misses. In addition to improving the
cache/memory performance, this optimization technique al so saves externa bus
bandwidth.

Instruction Selection

The following section gives some guidelines for choosing instructions to complete a
task.

One barrier to SIMD computation can be the existence of data-dependent branches.
Conditional moves can be used to eliminate data-dependent branches. Conditional
moves can be emulated in SIMD computation by using masked compares and logicals,

as shown in Example 3-19.

Example 3-19 Emulation of Conditional Moves

Hi gh-1 evel code:

short Al MAX_ELEMENT], B[MAX_ELEMENT], C[MAX_ELEMENT], D[MAX_ELEMENT],
E[MAX_ELEMENT] ;

for (i=0; i<MAX_ELEMENT; i++) {
if (ALi] > Bl[i]) {

qail =Hoil;
} else {
qail = Hil;
}
}
Assembly code:
Xor eax, eax

continued

3-33

Intel Pentium 4 Processor Optimization Coding for SMD Architectures 3

Example 3-19 Emulation of Conditional Moves (continued)

t op_of _I oop:
novq 0, [A + eax]
pcnpgtwmD, [B + eax]; Create conpare mask
novq mml, [D + eax]
pand nml, mO; Drop el enents where A<B
pandn m0, [E + eax] ; Drop elenents where A>B

por nmm0, mi; Crete single word
novq [C + eax], mD

add eax, 8

cnp eax, MAX_ELEMENT*2

jle top_of _| oop

Note that this can be applied to both SIMD integer and SIMD floating-point code.

If there are multiple consumers of an instance of aregister, group the consumers
together as closely as possible. However, the consumers should not be scheduled near
the producer.

Tuning the Final Application

The best way to tune your application once it is functioning correctly isto use a
profiler that measures the application whileit is running on a system. VTune analyzer
can help you determine where to make changes in your application to improve
performance. Using the VTune analyzer can help you with various phases required for
optimized performance. See “V Tune™ Performance Analyzer” in Appendix A for
more details on how to use the VTune analyzer. After every effort to optimize, you
should check the performance gains to see where you are making your major
optimization gains.

3-34

Optimizing for
SMD Integer Applications 4

The SIMD integer instructions provide performance improvements in applications that
are integer-intensive and can take advantage of the SIMD architecture of Intel
Pentium I1, Pentium 111, and Pentium 4 processors.

The guidelines for using these instructions in addition to the guidelines described in
Chapter 2, will help develop fast and efficient code that scales well across all
processors with MM X ™ technol ogy, processors that use Streaming SIMD Extensions
(SSE) SIMD integer instructions, as well as the Pentium 4 processor with the SIMD
integer instructionsin the Streaming SIMD Extensions 2 (SSE2).

For the sake of brevity, the collection of 64-bit and 128-bit SIMD integer instructions
supported by MM X technology, SSE, and SSE2 shall be referred to as SIMD integer
instructions.

Unless otherwise noted, the following sequences are written for the 64-bit integer
registers. Note that they can easily be changed to use the 128-bit SIMD integer form
available with SSE2 by replacing the references to nm0-mv with references to
XmmO-xmv .

This chapter contains several simple examples that will help you to get started with
coding your application. The goal isto provide simple, low-level operations that are
frequently used. The examples use a minimum number of instructions necessary to
achieve best performance on the Pentium, Pentium Pro, Pentium I, Pentium Il and
Pentium 4 processors.

Each example includes a short description, sample code, and notes if necessary. These
examples do not address scheduling asit is assumed the examples will be incorporated
in longer code sequences.

For planning considerations of using the new SIMD integer instructions, refer to
“Checking for Streaming SIMD Extensions 2 Support” in Chapter 3.

intel.

4-1

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

General Rules on SIMD Integer Code

The overall rules and suggestions are as follows:

Do not intermix 64-bit SIMD integer instructions with x87 floating-point
instructions. See “Using SIMD Integer with x87 Floating-point” section. Note that
al of the SIMD integer instructions can be intermixed without penalty.

When writing SSE2 code that works with both integer and floating-point data, use
the subset of SIMD convert instructions or load/store instructions to ensure that the
input operandsin XMM registers contain properly defined data type to match the
instruction. Code sequences containing cross-typed usage will produce the same
result across different implementations, but will incur a significant performance
penalty. Using SSE or SSE2 instructions to operate on type-mismatched SIMD
datain the XMM register is strongly discouraged.

Use the optimization rules and guidelines described in Chapters 2 and 3 that apply
both to the Pentium 4 processor in general and to using the SIMD integer
instructions.

Incorporate the prefetch instruction whenever possible (for details, refer to
Chapter 6, “Optimizing Cache Usage for Intel Pentium 4 Processors’).

Emulate conditional moves by using masked compares and logicals instead of
using conditional branches.

Using SIMD Integer with x87 Floating-point

All 64-bit SIMD integer instructions use the MM X registers, which shareregister state
with the x87 floating-point stack. Because of this sharing, certain rules and
considerations apply. Instructions which use the MM X registers cannot be freely
intermixed with x87 floating-point registers. Care must be taken when switching
between using 64-bit SIMD integer instructions and x87 floating-point instructions
(see “Using the EMMS Instruction” section below).

The SIMD floating-point operations and 128-bit SIMD integer operations can be
freely intermixed with either x87 floating-point operations or 64-bit SIMD integer
operations. The SIMD floating-point operations and 128-bit SIMD integer operations

4-2

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

use registers that are unrelated to the x87 FP/ MMX registers. The enms instruction is
not needed to transition to or from SIMD floating-point operations or 128-bit SIMD
operations.

Using the EMMS Instruction

When generating 64-bit SIMD integer code, keep in mind that the eight MM X
registers are aliased on the x87 floating-point registers. Switching from MM X
instructions to x87 floating-point instructions incurs afinite delay, so it is the best to
minimize switching between these instruction types. But when you need to switch, the
emms instruction provides an efficient means to clear the x87 stack so that subsequent
x87 code can operate properly on the x87 stack.

As soon as any instruction makes reference to an MM X register, al valid bitsin the
x87 floating-point tag word are set, which impliesthat all x87 registers contain valid
values. In order for software to operate correctly, the x87 floating-point stack should
be emptied when starting a series of x87 floating-point calculations after operating on
the MMX registers

Using enms clears all of the valid bits, effectively emptying the x87 floating-point
stack and making it ready for new x87 floating-point operations. The enms instruction
ensures a clean transition between using operations on the MM X registers and using
operations on the x87 floating-point stack. On the Pentium 4 processor, thereisafinite
overhead for using the enms instruction.

Failure to use the enms instruction (or the _mm enpt y() intrinsic) between operations
on the MMX registers and operations on the x87 floating-point registers may lead to
unexpected results.

A CAUTION. Failureto reset the tag word for FP instructions after
using an MMX instruction can result in faulty execution or poor
performance.

4-3

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Guidelines for Using EMMS Instruction

When devel oping code with both x87 floating-point and 64-bit SIMD integer
instructions, follow these steps:

1

Always call the enmrs instruction at the end of 64-bit SIMD integer code when the
code transitions to x87 floating-point code.

Insert the enms instruction at the end of all 64-bit SIMD integer code segments to
avoid an x87 floating-point stack overflow exception when an x87 floating-point
instruction is executed.

When writing an application that uses both floating-point and 64-bit SIMD integer
instructions, use the following guidelines to help you determine when to use enns:

If next instruction isx87 FP: Use _nm enpt y() after a64-bit SIMD integer
instruction if the next instruction isan x87 FP instruction; for example, before
doing cal culations on floats, doubles or long doubles.

Don’'t empty when already empty: If the next instruction uses an MM X register,

_nm enpt y() incurs acost with no benefit.

Group Instructions: Try to partition regions that use x87 FP instructions from
those that use 64-bit SIMD integer instructions. This eliminates needing an enms
instruction within the body of acritical loop.

Runtime initialization: Use _nm enpt y() during runtime initialization of __ n64
and x87 FP datatypes. This ensures resetting the register between data type
transitions. See Example 4-1 for coding usage.

Example 4-1 Resetting the Register between _ m64 and FP Data Types
I ncorrect Usage Correct Usage
__nmB4 x = _mpaddd(y, z); _ B4 x = _mpaddd(y, z);
float f = init(); float f = (_mMenpty(), init());
intel.

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Further, you must be aware that your code generates an MM X instruction, which uses
the MM X registers with the Intel C++ Compiler, in the following situations:

* when using a64-bit SIMD integer intrinsic from MM X technology, SSE, or SSE2

* when using a 64-bit SIMD integer instruction from MM X technology, SSE, or
SSE2 through inline assembly

* whenreferencing an __n64 datatype variable

Additional information on the x87 floating-point programming model can be found in
the 1A-32 Intel® Architecture Software Devel oper’s Manual, Volume 1. For more
documentation on enms, visittheht t p: // devel oper.i ntel . com web site.

Data Alignment

Make sure that 64-bit SIMD integer datais 8-byte aligned and that 128-bit SIMD
integer datais 16-byte aligned. Referencing unaligned 64-bit SIMD integer data can
incur a performance penalty due to accesses that span 2 cache lines. Referencing
unaligned 128-bit SIMD integer data will result in an exception unless the novdqu
(move double-quadword unaligned) instruction is used. Using the movdqu instruction
on unaligned data can result in lower performance than using 16-byte aligned
references.

Refer to section “ Stack and Data Alignment” in Chapter 3 for more information.

Data Movement Coding Techniques

In general, better performance can be achieved if the datais pre-arranged for SIMD
computation (see the “Improving Memory Utilization” section of Chapter 3).
However, this may not always be possible. This section covers techniques for
gathering and re-arranging data for more efficient SIMD computation.

Unsigned Unpack

The MM X technology provides several instructions that are used to pack and unpack
datain the MM X registers. The unpack instructions can be used to zero-extend an
unsigned number. Example 4-2 assumes the source is a packed-word (16-bit) data

type.

intel. 45

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Example 4-2 Unsigned Unpack Instructions

;I nput:

; MVD sour ce val ue

; MW O a local variable can be used

; instead of the register MW if

; desired.

; Qutput:

; MVD two zero-extended 32-bit

; doubl ewords fromtwo | ow end

; wor ds

; MVIL two zero-extended 32-bit

; doubl ewords from two hi gh-end

; wor ds

novq mvL, MVD ; COpy source

punpcklwd MWD, MW ; unpack the 2 | ow end words
; into two 32-bit doubl eword

punpckhwd MML, MW ; unpack the 2 high-end words

; into two 32-bit doubl ewords

Signed Unpack

Signed numbers should be sign-extended when unpacking the values. Thisissimilar to
the zero-extend shown above except that the psr ad instruction (packed shift right
arithmetic) is used to effectively sign extend the values. Example 4-3 assumes the
source is a packed-word (16-bit) data type.

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

Example 4-3 Signed Unpack Code

;I nput:

; MVD source val ue

; Qutput:

; MVD two sign-extended 32-bit doubl ewords

; fromthe two | ow end words

; MVL two sign-extended 32-bit doubl ewords

; fromthe two hi gh-end words

novq MvL, MMD ; COpy source

punpcklwd MWD, MWD ; unpack the 2 low end words of the source
; into the second and fourth words of the
; destination

punpckhwd MML, MML ; unpack the 2 high-end words of the source
; into the second and fourth words of the
; destination

psrad MWD, 16 ; sign-extend the 2 | owend words of the source
; into two 32-bit signed doubl ewords

psrad MML, 16 ; sign-extend the 2 high-end words of the

; source into two 32-bit signed doubl ewords

Interleaved Pack with Saturation

The pack instructions pack two values into the destination register in a predetermined
order. Specifically, the packssdw instruction packs two signed doublewords from the
source operand and two signed doublewords from the destination operand into four
signed words in the destination register as shown in Figure 4-1.

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Figure 4-1 PACKSSDWmm, mm/mm64 Instruction Example

mm/m64 mm
l D\[C |,|/B,/|A
[D. [C. [B. [A.]

Figure 4-2 illustrates two values interleaved in the destination register, and

Exampl e 4-4 shows code that uses the operation. The two signed doublewords are used
as source operands and the result is interleaved signed words. The pack instructions
can be performed with or without saturation as needed.

Figure 4-2 Interleaved Pack with Saturation

MM/M64 mm

. b_[c¢ LB [A

N e

[D.] B,nlmcil A

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Example 4-4 Interleaved Pack with Saturation

I nput :
MVD signed sourcel val ue
MVL signed source2 val ue
Cut put :

MvD the first and third words contain the
si gned- sat ur at ed doubl ewords from MWD,
the second and fourth words contain
si gned- sat ur at ed doubl ewords from MVL

packssdw MVD, MMD ; pack and sign saturate
packssdw MML, MML ; pack and sign saturate
punpcklwd MWD, MML ; interleave the lowend 16-bit

val ues of the operands

The pack instructions always assume that the source operands are signed numbers. The
result in the destination register is always defined by the pack instruction that performs
the operation. For example, the packssdw instruction packs each of the two signed
32-bit values of the two sources into four saturated 16-bit signed valuesin the
destination register. The packuswb instruction, on the other hand, packs each of the
four signed 16-bit values of the two sources into eight saturated eight-bit unsigned
values in the destination. A compl ete specification of the MM X instruction set can be
found in the Intel® Architecture MMX™ Technology Programmer’s Reference
Manual, order number 243007.

Interleaved Pack without Saturation

Example 4-5 is similar to Example 4-4 except that the resulting words are not
saturated. In addition, in order to protect against overflow, only the low order 16 bits of
each doubleword are used in this operation.

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

Example 4-5 Interleaved Pack without Saturation
;I nput:
; MVD signed source val ue
; MVL signed source val ue
; Qutput:
; MVD the first and third words contain the
; low 16-bits of the doubl ewords in MWD,
; the second and fourth words contain the
; low 16-bits of the doubl ewords in MV
pslld MV, 16 ; shift the 16 LSB fromeach of the
; doubl eword values to the 16 MSB
; position
pand MWD, {O,ffff,0,ffff}
; mask to zero the 16 MSB
; of each doubl eword val ue
por MVD, NMML ; nmerge the two operands

Non-Interleaved Unpack

The unpack instructions perform an interleave merge of the data elements of the
destination and source operands into the destination register. The following example
merges the two operands into the destination registers without interleaving. For
example, take two adjacent elements of a packed-word datatypein sour cel and place
thisvaluein the low 32 bits of the results. Then take two adjacent elements of a
packed-word datatype in sour ce2 and place this value in the high 32 bits of the
results. One of the destination registers will have the combination illustrated in

Figure 4-3.

4-10

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Figure 4-3 Result of Non-Interleaved Unpack Low in MMO

mm/m64 mm
[Zs] 221 20] 2o] [LT LT LT L

The other destination register will contain the opposite combination illustrated in
Figure 4-4.

Figure 4-4 Result of Non-Interleaved Unpack High in MM1

mm/m64 mm
[2] &] % | [LTL[LT L]

Code in the Exampl e 4-6 unpacks two packed-word sources in a non-interleaved way.
The god isto use the instruction which unpacks doublewords to a quadword, instead
of using the instruction which unpacks words to doublewords.

intel. 411

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

Example 4-6 Unpacking Two Packed-word Sources in a Non-interleaved Way

;I nput:

; Qutput:

novq
punpckl dq

punpckhdq

MEe, MWD
MVD, MVL

MVE, MVL

packed-word source val ue
packed-word source val ue

contains the two | owend words of the
original sources, non-interleaved
contains the two high end words of the
original sources, non-interleaved.

; copy sourcel

; replace the two high-end words

; of MO wth two | owend words of
; MML; |eave the two | ow end words
; of MMD in place

; move two high-end words of MW

; to the two | owend words of MWR;
; place the two hi gh-end words of

; MML in two high-end words of MW

Extract Word

The pext r winstruction takes the word in the designated MM X register selected by the
two least significant bits of the immediate value and movesit to the lower half of a
32-bit integer register, see Figure 4-5 and Example 4-7.

4-12

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

Figure 4-5 pextrwlInstruction

MM
63 31 0
X4 X3 X2 X1
R32 l
31 0

0..0 X1

Example 4-7 pext rwlnstruction Code
;I nput:
; eax source val ue
; i mredi ate val ue: “0”
; Qutput:
; edx 32-bit integer register containing the
; extracted word in the |loworder bits &
; the hi gh-order bits zero-extended
nmovq m0, [eax]
pextrw edx, mD, O

Insert Word

The pi nsrwinstruction loads aword from the lower half of a 32-bit integer register or
from memory and insertsit in the MM X technology destination register at a position
defined by the two least significant bits of the immediate constant. Insertion is donein
such away that the three other words from the destination register are left untouched,
see Figure 4-6 and Example 4-8.

4-13

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

Figure 4-6 pi nsrwInstruction

MM
63 31 0
X4 X3 Y1 X1
31 Ik 0
Y2 Y1
Example 4-8 pi nsrwlnstruction Code
;I nput:
; edx pointer to source val ue
; Qutput:
; nm0 register with new 16-bit val ue inserted
nov eax, [edx]

pinsrw mD, eax, 1

If al of the operandsin aregister are being replaced by a series of pi nsr winstructions,
it can be useful to clear the content and break the dependence chain by either using the
pxor instruction or loading the register. See the * Clearing Registers’ sectionin

Chapter 2.

4-14

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

Example 4-9 Repeated pi nsrwlnstruction Code
I nput :
edx pointer to structure containing source
val ues at offsets: of +0, +10, +13, and +24
i mredi ate val ue: “1”
Cut put :

MUX regi ster with new 16-bit val ue inserted
pxor nm0, MmO ; Breaks dependedncy on previous value of mMm®D
nov eax, [edx]
pi nsrw nm0, eax, O
nov eax, [edx+10]
pi nsrw mm0, eax, 1
nov eax, [edx+13]
pi nsrw m0, eax, 2
nov eax, [edx+24]
pi nsrw nm0, eax, 3

Move Byte Mask to Integer

The pmoviskb instruction returns a bit mask formed from the most significant bits of
each byte of its source operand. When used with the 64-bit MM X registers, this
produces an 8-bit mask, zeroing out the upper 24 bits in the destination register. When
used with the 128-bit XMM registers, it produces a 16-bit mask, zeroing out the upper
16 bitsin the destination register. The 64-bit version is shown in Figure 4-7 and

Example 4-10.

4-15

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Figure 4-7 pmovnskb Instruction Example

MM
63 55 47 39 31 23 15 7 0
31
0..0 0..0
7 0
R32
Example 4-10 pnovnskb Instruction Code
;I nput:
; source val ue
; Qut put:
; 32-bit register containing the byte mask in the | ower
; eight bits
novq m0, [edi]

prmovirskb eax, mD

intel ® 4-16

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Packed Shuffle Word for 64-bit Registers

The pshuf instruction (see Figure 4-8, Example 4-11) uses the immediate (i m8)
operand to select between the four words in either two MM X registers or one MM X
register and a 64-bit memory location. Bits 1 and O of the immediate value encode the
source for destination word O in MM X register ([15- 0]), and so on as shown in the
table:

Bits Word
1-0 0
3-2 1
5-4 2
7-6 3

Bits 7 and 6 encode for word 3in MMX register ([63- 48]). Similarly, the 2-bit
encoding represents which source word is used, for example, binary encoding of 10
indicates that source word 2 in MM X register/memory (mfnmen{ 47- 32]) is used, see
Figure 4-8 and Example 4-11.

Figure 4-8 pshuf Instruction Example

03 MM/m64 0

X4 X3 X2 X1

63 MM 0

X1 X2 X3 X4

4-17

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Example 4-11 pshuf Instruction Code

I nput :
edi sour ce val ue
Cut put :
MVL MM r egi ster containing re-arranged words
novq m0, [edi]
pshufw mml, nmD, Ox1b

Packed Shuffle Word for 128-bit Registers

The pshuf | wipshuf hwinstruction performs afull shuffle of any source word field
within the low/high 64 bits to any result word field in the low/high 64 bits, using an
8-bit immediate operand; the other high/low 64 bits are passed through from the source
operand.

The pshuf d instruction performs afull shuffle of any double-word field within the
128-bit source to any double-word field in the 128-bit result, using an 8-bit immediate
operand.

No more than 3 instructions, using pshuf | wpshuf hw/pshuf d, are required to
implement some common data shuffling operations. Broadcast, Swap, and Reverse are
illustrated in Example 4-12, Example 4-13, and Example 4-14, respectively.

Example 4-12 Broadcast using 2 instructions

/* Goal: Broadcast the value fromword 5 to all words */
/* Instruction Result */
| 71 6] 5] 4] 3| 2| 1| 0

PSHUFHW (3,2,1,1)| 7| 6] 5| 5| 3| 2| 1] O

PSHUFD (2,2,2,2)| 5 5/ 5 5/ 5 5 5| 5|

intel ® 4-18

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Example 4-13 Swap using 3 instructions

/* Goal: Swap the values in word 6 and word 1 */
/* Instruction Result */

| 71 6] 51 4 3] 2| 1] 0
PSHUFD (3,0,1,2)| 7] 6] 1] 0] 3| 2| 5] 4]

PSHUFHW (3,1,2,0)| 7| 1| 6 0] 3| 2| 5| 4]

PSHUFD (3,0,1,2)| 7| 1| 5| 4| 3| 2| 6| 0

Example 4-14 Reverse using 3 instructions

/* Goal: Reverse the order of the words */
/* Instruction Result */

| 71 6] 5] 4] 3| 2| 1| 0
PSHUFLW (0,1,2,3)| 7| 6] 5| 4] 0] 1] 2] 3|

PSHUFHW (0, 1,2,3)| 4| 5 6| 7] 0| 1] 2| 3|

PSHUFD (1,0,3,2)| O] 1] 2| 3| 4| 5 6| 7]

Unpacking/interleaving 64-bit Data in 128-bit Registers

The punpckl gdg/punpchqgdgq instructions interleave the low/high-order 64-bits of the
source operand and the low/high-order 64-bits of the destination operand and writes
them to the destination register. The high/low-order 64-bits of the source operands are
ignored.

"Ttel ® 4-19

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Data Movement

There are two additional instructions to enable data movement from the 64-bit SIMD
integer registersto the 128-bit SIMD registers.

The movg2dq instruction moves the 64-bit integer datafrom an MM X register (source)
to a128-bit destination register. The high-order 64 bits of the destination register are
zeroed-out.

The novdg2q instruction moves the low-order 64-bits of integer data from a 128-bit
source register to an MM X register (destination).

Conversion Instructions

New instructions have been added to support 4-wide conversion of single-precision
data to/from double-word integer data. Also, conversions between double-precision
data and double-word integer data have been added.

Generating Constants

The SIMD integer instruction sets do not have instructions that will load immediate
constants to the SIMD registers. The following code segments generate frequently
used constants in the SIMD register. Of course, you can also put constants as local
variablesin memory, but when doing so be sure to duplicate the values in memory and
load the values with aovq, novdga, or novdqu instructions, see Example 4-15.

Example 4-15 Generating Constants

pxor MV, MWD ; generate a zero register in MWD

pcnpeq MMVL, MML ; CGenerate all 1's in register MWL,
; whichis -1 in each of the packed
data type fields

pxor mMvD, MVD
pcrmpeq MML, MML
psubb MWD, MML [psubw MVD, MML] (psubd MVD, MWL)

continued

4-20

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Example 4-15 Generating Constants (continued)

; three instructions above generate
; the constant 1 in every

; packed-byte [or packed-word]

; (or packed-dword) field

pcnpeq MVL, MWL
psrlw MML, 16-n(psrld MV, 32-n)

; two instructions above generate
; the signed constant 2"-1 in every
; packed-word (or packed-dword) field

pcnpeq MVL, MWL
psllw MM, n (psllid MM, n)

; two instructions above generate
; the signed constant -2n in every
; packed-word (or packed-dword) field

50

% NOTE. Becausethe SMD integer instruction sets do not support
= shift instructions for bytes, 2n—1 and - 2n are relevant only for
packed words and packed doublewords.

Building Blocks

This section describes instructions and a gorithms which implement common code
building blocks efficiently.

intel. 421

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Absolute Difference of Unsigned Numbers

Example 4-16 computes the absolute difference of two unsigned numbers. It assumes
an unsigned packed-byte data type. Here, we make use of the subtract instruction with
unsigned saturation. This instruction receives UNSI GNED operands and subtracts them
with UNSI GNED saturation. This support exists only for packed bytes and packed words,
not for packed doublewords.

Example 4-16 Absolute Difference of Two Unsigned Numbers

I nput :

MWD sour ce operand
MML sour ce operand

Cut put :
MWD absol ute difference of the unsigned
oper ands
novq M, MVD ; make a copy of MWD
psubusb MVD, MML ; conmpute difference one way
psubusb MML, MW ; compute difference the other way
por MVD, MML ; OR them toget her

This example will not work if the operands are signed.

Note that the psadbw instruction may also be used in some situations; see section _
“Packed Sum of Absolute Differences’ for details.

Absolute Difference of Signed Numbers
Example 4-17 computes the absol ute difference of two signed numbers.

% NOTE. Thereisno MMX™ technology subtract instruction that
e receives SI GNED operands and subtracts them with UNSI GNED
saturation.

intel ® 4-22

Intel Pentium 4 Processor Optimization

Optimizing for SMD Integer Applications 4

The technique used hereisto first sort the corresponding elements of the input
operands into packed words of the maximum values, and packed words of the
minimum values. Then the minimum values are subtracted from the maximum values
to generate the required absolute difference. The key is a fast sorting technique that
usesthefactthat B = xor (A, xor (A, B)) and A = xor (A 0). Thusin apacked data
type, having some elements being xor (A, B) and some being 0, you could xor such an
operand with A and receive in some places values of A and in some values of B. The
following examples assume a packed-word data type, each element being a signed

value.

Example 4-17 Absolute Difference of Signed Numbers

; 1 nput :

; MWD si gned source operand
; MML si gned source operand

; Qut put :

; MWD absol ute difference of the unsigned

novq MR,
pcnpgt w MMD,
nmovq MW,
pxor MV,
pand M2,
pxor M4,
pxor MML,
psubw MWL,

oper ands

MVvD ;
MVIL ;

make a copy of sourcel (A
create mask of

sour cel>source2 (A>B)
nmake anot her copy of A

create the internediate val ue of
the swap operation - xor (A B)

create a mask of 0Os and xor (A B)
el ements. Where A>B there will
be a val ue xor (A B) and where
A<=B there will be 0.

m ni ma- xor (A, swap mask)

maxi ma- xor (B, swap nask)
absolute difference =

maxi ma- m ni m

4-23

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Absolute Value

Use Example 4-18 to compute | x| , where x is signed. This example assumes signed
words to be the operands.

Example 4-18 Computing Absolute Value

I nput :
MVD signed source operand

Cut put :
; MVL ABS(MVD)
pxor MML, MML ; set ML to all zeros
psubw MML, MWD ; make each MML word contain the

negative of each MWD word

pmaxsw MVL, MWD ; ML will contain only the positive

(larger) values - the absol ute val ue

A CAUTION. The absolute value of the most negative number (that
is, 8000 hex for 16-hit) cannot be represented using positive
numbers. This algorithmwill return the original value for the
absolute value (8000 hex).

Clipping to an Arbitrary Range [high, low]

This section explains how to clip avaluesto arange [hi gh, | ow]. Specifically, if the
valueislessthan | ow or greater than hi gh, then clipto | ow or hi gh, respectively.
This technique uses the packed-add and packed-subtract instructions with saturation
(signed or unsigned), which means that this technique can only be used on packed-byte
and packed-word data types.

i ntel ® 4-24

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

The examplesin this section use the constants packed_nax and packed_ni n and show
operations on word values. For simplicity we use the following constants
(corresponding constants are used in case the operation is done on byte values):

packed_max equals Ox7fff 7fff7fff 7fff
packed_ni n equals 0x8000800080008000

packed_| ow contains the valuel ow in all four words of the packed-words data
type

packed_hi gh containsthe value hi gh in all four words of the packed-words data
type

packed_usmax all valuesequal 1

hi gh_us addsthe hi gh valueto al data elements (4 words) of packed_ni n

| ow_us addsthe | ow valueto al data elements (4 words) of packed_ni n

Highly Efficient Clipping

For clipping signed words to an arbitrary range, the pmaxsw and pni nswinstructions
may be used. For clipping unsigned bytesto an arbitrary range, the pmaxub and pmi nub
instructions may be used. Example 4-19 shows how to clip signed words to an
arbitrary range; the code for clipping unsigned bytesis similar.

Example 4-19 Clipping to a Signed Range of Words [high, low]

I nput :
MVD si gned source operands
CQut put :

MVD signed words clipped to the signed
range [high, |ow]

pm nsw MWD, packed_hi gh

pmaxsw MWD, packed_| ow

4-25

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Example 4-20 Clipping to an Arbitrary Signed Range [high, low]

;I nput:

; MVD si gned source operands

; Qutput:

; MVL signed operands clipped to the unsigned
; range [high, |ow

paddw MWD, packed_min ; add with no saturation

; 0x8000 to convert to unsigned
paddusw MMD, (packed_usnmax

hi gh_us)
; in effect this clips to high

psubusw MVMD, (packed_usnmax hi gh_us + | ow_us)
; in effect this clips to |low

paddw MWD, packed_| ow ; undo the previous two offsets

The code above converts values to unsigned numbers first and then clips them to an

unsigned range. The last instruction converts the data back to signed data and places
the data within the signed range. Conversion to unsigned datais required for correct
results when (hi gh -1 ow) < 0x8000.

If (hi gh - 1 ow) >= 0x8000, the algorithm can be simplified as shown in Example 4-21:

Example 4-21 Simplified Clipping to an Arbitrary Signed Range

; Input: MVD si gned source operands

; Qutput: MVL signed operands clipped to the unsigned
; range [high, |ow]

paddssw MWD, (packed_max - packed_hi gh)

; in effect this clips to high
psubssw MWD, (packed_usmax - packed_hi gh + packed_ow)
; clips to | ow
paddw MWD, low ; undo the previous two offsets

intel ® 4-26

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

This algorithm saves a cycle when it is known that (hi gh - 1 ow) >= 0x8000. The
three-instruction algorithm does not work when (hi gh - | ow) < 0x8000, because
oxffff minusany number < 0x8000 will yield a number greater in magnitude than
0x8000, which is a negative number. When the second instruction,

psubssw MMD, (Oxffff - high + |ow,

in the three-step algorithm (Example 4-21) is executed, a negative number is
subtracted. The result of this subtraction causes the valuesin Mvb to be increased
instead of decreased, as should be the case, and an incorrect answer is generated.

Clipping to an Arbitrary Unsigned Range [high, low]

The code in Example 4-22 clips an unsigned value to the unsigned range [hi gh, | ow].
If thevalueislessthan ow or greater than hi gh, then clipto | owor hi gh, respectively.
This technique uses the packed-add and packed-subtract instructions with unsigned
saturation, thus this technique can only be used on packed-bytes and packed-words
data types.

The example illustrates the operation on word values.

Example 4-22 Clipping to an Arbitrary Unsigned Range [high, low]

I nput :
MVD unsi gned source operands
Cut put :

MVL unsi gned operands clipped to the unsigned
range [H GH, LOW

paddusw MWD, Oxffff - high

in effect this clips to high
psubusw MWD, (Oxffff - high + |ow

in effect this clips to | ow
paddw MWD, | ow

undo the previous two offsets

intel. 427

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Packed Max/Min of Signed Word and Unsigned Byte

Signed Word

The pmaxsw instruction returns the maximum between the four signed words in either
two SIMD registers, or one SIMD register and a memory location.

The pri nswinstruction returns the minimum between the four signed words in either
two SIMD registers, or one SIMD register and a memory location.

Unsigned Byte

The pmaxub instruction returns the maximum between the eight unsigned bytesin
either two SIMD registers, or one SIMD register and a memory location.

The pni nub instruction returns the minimum between the eight unsigned bytesin
either two SIMD registers, or one SIMD register and a memory location.

Packed Multiply High Unsigned

The prmul huw and pnul hwinstruction multiplies the unsigned/signed words in the
destination operand with the unsigned/signed words in the source operand. The
high-order 16 bits of the 32-bit intermediate results are written to the destination
operand.

Packed Sum of Absolute Differences

The psadbw instruction (see Figure 4-9) computes the absolute value of the difference
of unsigned bytes for either two SIMD registers, or one SIMD register and a memory
location. These differences are then summed to produce aword result in the lower
16-bit field, and the upper three words are set to zero.

intel ® 4-28

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Figure 4-9 PSADBWInstruction Example

MM/m64
63 0

X8| X7 | X6 | X5 | X4 | X3 | X2 | X1

63 MM 0
Y8| Y7 | Y6| Y5 |Y4 | Y3 |Y2)| Yl

63 ~Tem P_ 0
T8 | T7 | T6 T5 | T4 | T3 | T2 T1
63 47 2 15 MM 0

0.0 0.0 0..0| TI+T2+T3+T4+T5+T6+H7+T8

The subtraction operation presented above is an absolute difference, that is,
t = abs(x-y) . Thebytevalues are stored in temporary space, all values are summed
together, and the result is written into the lower word of the destination register.

Packed Average (Byte/Word)

The pavgb and pavgw instructions add the unsigned data elements of the source
operand to the unsigned data el ements of the destination register, along with acarry-in.
The results of the addition are then each independently shifted to the right by one bit
position. The high order bits of each element are filled with the carry bits of the
corresponding sum.

The destination operand is an SIMD register. The source operand can either be an
SIMD register or amemory operand.

The PAVGB instruction operates on packed unsigned bytes and the PAVGWinstruction
operates on packed unsigned words.

4-29

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Complex Multiply by a Constant

Complex multiplication is an operation which requires four multiplications and two
additions. Thisis exactly how the praddwd instruction operates. In order to use this
instruction, you need to format the data into multiple 16-bit values. The real and
imaginary components should be 16-bits each. Consider Example 4-23, which
assumes that the 64-bit MM X registers are being used:

* Lettheinput databeDr and Di where Dr isreal component of thedataand Di is
imaginary component of the data.

* Format the constant complex coefficientsin memory asfour 16-bit values[Cr - Ci
C Cr]. Remember to load the values into the MM X register using anovq
instruction.

* Thereal component of the complex product is
Pr = Dr*CQr - Di*Ci
and the imaginary component of the complex productisPi = Dr*Ci + Di *Cr.

Example 4-23 Complex Multiply by a Constant

I nput :
MVD conpl ex value, Dr, D
MVL constant conplex coefficient in the form
[-G G Cr]
Cut put :
MVD two 32-bit dwords containing [Pr Pi]
punpckl dg MWD, MWD ; makes [Dr D Dr Di]
prmaddwd MVD, MML ; done, the result is

[(Dr*Cr-Di *Gi)(Dr*Gi+Di *Cr)]

Note that the output is a packed doubleword. If needed, a pack instruction can be used
to convert the result to 16-bit (thereby matching the format of the input).

i ntel ® 4-30

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Packed 32*32 Multiply

The PMULUDQ I nstruction performs an unsigned multiply on the lower pair of
double-word operands within each 64-bit chunk from the two sources; the full 64-bit
result from each multiplication isreturned to the destination register. Thisinstructionis
added in both a 64-bit and 128-bit version; the latter performs 2 independent
operations, on the low and high halves of a 128-bit register.

Packed 64-bit Add/Subtract

The PADDQ/PSUBQ instructions add/subtract quad-word operands within each 64-bit
chunk from the two sources; the 64-bit result from each computation is written to the
destination register. Like the integer ADD/SUB instruction, PADDQ/PSUBQ can operate on
either unsigned or signed (two’s complement notation) integer operands. When an
individual result istoo large to be represented in 64-bits, the lower 64-bits of the result
are written to the destination operand and therefore the result wraps around. These
instructions are added in both a 64-bit and 128-bit version; the | atter performs 2
independent operations, on the low and high halves of a 128-hit register.

128-bit Shifts

Theps! | dg/psr | dq instructions shift the first operand to the left/right by the amount
of bytes specified by the immediate operand. The empty low/high-order bytes are
cleared (set to zero). If the value specified by theimmediate operand is greater than 15,
then the destination is set to all zeros.

Memory Optimizations

You can improve memory accesses using the following techniques:
* Avoiding partial memory accesses
* Increasing the bandwidth of memory fills and video fills

* Prefetching data with Streaming SIMD Extensions (see Chapter 6, “ Optimizing
Cache Usagefor Intel Pentium 4 Processors’).

4-31

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

The MMX registers and XMM registers allow you to move large quantities of data
without stalling the processor. Instead of loading single array valuesthat are 8, 16, or
32 bitslong, consider loading the values in a single quadword or double quadword,
then incrementing the structure or array pointer accordingly.

Any datathat will be manipulated by SIMD integer instructions should be loaded
using either:

* the SIMD integer instruction that loads a 64-bit or 128-bit operand (for example,
movg MWD, nb64)

* theregister-memory form of any SIMD integer instruction that operates on a
guadword or double quadword memory operand (for example, praddw Mo, n64).

All SIMD data should be stored using the SIMD integer instruction that stores a 64-bit
or 128-bit operand (for example, novg n64, MWD)

The goal of these recommendationsis twofold. First, the loading and storing of SIMD
datais more efficient using the larger block sizes. Second, this helpsto avoid the
mixing of 8-, 16-, or 32-bit load and store operations with SIMD integer technology
load and store operations to the same SIMD data. This, in turn, prevents situationsin
which small loads follow large stores to the same area of memory, or large loads
follow small storesto the same area of memory. The Pentium 1, Pentium 111, and
Pentium 4 processors stall in these situations; see Chapter 2, “ General Optimization
Guidelines” for more details.

Partial Memory Accesses

Consider acase with large load after a series of small storesto the same area of
memory (beginning at memory address nem). The large load will stall in this case as
shown in Example 4-24.

Example 4-24 A Large Load after a Series of Small Stores (Penalty)

nov nmem eax ; store dword to address “nent
nmov mem + 4, ebx ; store dword to address “mem + 4"
novq nm0, nem ; load gword at address “ment, stalls

i ntel ® 4-32

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

The novg must wait for the stores to write memory before it can access all the data it
requires. This stall can aso occur with other datatypes (for example, when bytes or
words are stored and then words or doublewords are read from the same area of
memory). When you change the code sequence as shown in Example 4-25, the
processor can access the data without delay.

Example 4-25 Accessing Data without Delay

novd nml, ebx ; build data into a gword first
; before storing it to nmenory

novd m2, eax

psllq mm, 32

por mi, mR

novq mem mil ; store SIMD variable to “nment as
; a gword

novq nm0, mem ; load gword SIMD “menf, no stall

Let us now consider a case with a series of small loads after alarge store to the same
area of memory (beginning at memory address mem) as shown in Example 4-26. Most
of the small loads will stall because they are not aligned with the store; see “ Store
Forwarding” in Chapter 2 for more details.

Example 4-26 A Series of Small Loads after a Large Store

novq mem mo ; store gword to address “nment
nov bx, mem + 2 ; load word at “mem + 2" stalls
nov cX, nem+ 4 ; load word at “nem + 4" stalls

I ntel ® 4-33

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

The word loads must wait for the quadword store to write to memory before they can
access the data they require. This stall can also occur with other data types (for
example, when doublewords or words are stored and then words or bytes are read from
the same area of memory). When you change the code sequence as shown in
Example 4-27, the processor can access the data without delay.

Example 4-27 Eliminating Delay for a Series of Small Loads after a Large Store

novq mem mo ; store gword to address “nment
nov(q nml, mem ; load gword at address “ment
novd eax, mml ; transfer “mem+ 2" to eax from

MWX regi ster, not nenory
psrlqg nml, 32
shr eax, 16
novd ebx, nml ; transfer “mem+ 4" to bx from
;. MW regi ster, not nenory
and ebx, Offffh

These transformations, in general, increase the number of instructions required to
perform the desired operation. For Pentium 11, Pentium III, and Pentium 4 processors,
the benefit of avoiding forwarding problems outweighs the performance penalty dueto
the increased number of instructions, making the transformations worthwhile.

Increasing Bandwidth of Memory Fills and Video Fills

It is beneficia to understand how memory is accessed and filled. A
memory-to-memory fill (for example a memory-to-video fill) is defined as a 64-byte
(cacheline) load from memory which isimmediately stored back to memory (such asa
video frame buffer). The following are guidelines for obtaining higher bandwidth and
shorter latencies for sequential memory fills (video fills). These recommendations are
relevant for all Intel architecture processors with MM X technology and refer to cases
in which the loads and stores do not hit in the first- or second-level cache.

4-34

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Increasing Memory Bandwidth Using the MOVDQ Instruction

Loading any size data operand will cause an entire cache line to be loaded into the
cache hierarchy. Thus any size load |ooks more or |ess the same from a memory
bandwidth perspective. However, using many smaller loads consumes more
microarchitectural resources than fewer larger stores. Consuming too many of these
resources can cause the processor to stall and reduce the bandwidth that the processor
can request of the memory subsystem.

Using novdgq to store the data back to UC memory (or WC memory in some cases)
instead of using 32-bit stores (for example, novd) will reduce by three-quarters the
number of stores per memory fill cycle. Asaresult, using the novdg instruction in
memory fill cycles can achieve significantly higher effective bandwidth than using the
novd instruction.

Increasing Memory Bandwidth by Loading and Storing to and from
the Same DRAM Page

DRAM isdivided into pages, which are not the same as operating system (OS) pages.
The size of aDRAM page is afunction of the total size of the DRAM and the
organization of the DRAM. Page sizes of severa Kilobytes are common. Like OS
pages, DRAM pages are constructed of sequential addresses. Sequential memory
accesses to the same DRAM page have shorter latencies than sequential accesses to
different DRAM pages. In many systems the latency for a page miss (that is, an access
to adifferent pageinstead of the page previously accessed) can betwice aslarge asthe
latency of amemory page hit (access to the same page as the previous access).
Therefore, if theloads and stores of the memory fill cycle are to the same DRAM page,
asignificant increase in the bandwidth of the memory fill cycles can be achieved.

Increasing UC and WC Store Bandwidth by Using Aligned Stores

Using aligned storesto fill UC or WC memory will yield higher bandwidth than using
unaligned stores. If aUC store or some WC stores cross a cache line boundary, asingle
store will result in two transaction on the bus, reducing the efficiency of the bus
transactions. By aligning the stores to the size of the stores, you eliminate the
possibility of crossing a cache line boundary, and the stores will not be split into
separate transactions.

4-35

Intel Pentium 4 Processor Optimization Optimizing for SMD Integer Applications 4

Converting from 64-bit to 128-bit SIMD Integer

The SSE2 define a superset of 128-bit integer instructions currently availablein MM X
technology; the operation of the extended instructions remains the same and simply
operate on data that is twice aswide. This simplifies porting of current 64-bit integer
applications. However, there are few additional considerations:

Computation instructions which use a memory operand that may not be aligned to
a 16-byte boundary must be replaced with an unaligned 128-bit load (novdqu)
followed by the same computation operation that uses instead register operands.
Use of 128-hit integer computation instructions with memory operands that are not
16-byte aligned will result in a General Protection fault. The unaligned 128-bit
load and store is not as efficient as the corresponding aligned versions; this can
reduce the performance gains when using the 128-bit SIMD integer extensions.
The genera guidelines on the aignment of memory operands are:

— The greatest performance gains can be achieved when all memory streams are
16-byte aligned.

— Reasonable performance gains are possible if roughly half of all memory
streams are 16-byte aligned, and the other half are not.

— Little or no performance gain may result if all memory streams are not aligned
to 16-bytes; in this case, use of the 64-bit SIMD integer instructions may be
preferable.

L oop counters need to be updated because each 128-bit integer instruction operates
on twice the amount of data as the 64-bit integer counterpart.

Extension of the pshuf winstruction (shuffle word across 64-bit integer operand)
across afull 128-bit operand is emulated by a combination of the following
instructions: pshuf hw, pshuf | w, pshuf d.

Use of the 64-bit shift by bit instructions (psr | g, ps! | q) are extended to 128 bits
in these ways:

— useof psrl g andpsl | g, dlong with masking logic operations

— code sequence is rewritten to use the psr 1 dg and psl | dq instructions (shift
double quad-word operand by bytes).

4-36

Optimizing for SMD

Floating-point Applications 5

This chapter discusses general rules of optimizing for the single-instruction,
multiple-data (SIM D) floating-point instructions available in Streaming SIMD
Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2). This chapter also
provides examples that illustrate the optimization techniques for single-precision and
double-precision SIMD floating-point applications.

General Rules for SIMD Floating-point Code

The rules and suggestions listed in this section help optimize floating-point code
containing SIMD floating-point instructions. Generally, it isimportant to understand
and balance port utilization to create efficient SIMD floating-point code. The basic
rules and suggestions include the following:

* Follow all guidelinesin Chapter 2 and Chapter 3.

* Exceptions: mask exceptions to achieve higher performance. When exceptions are
unmasked, software performanceis slower.

* Utilize the flush-to-zero mode for higher performance to avoid the penalty of
dealing with denormals and underflows.

* Incorporate the prefetch instruction whenever possible (for details, refer to
Chapter 6, “Optimizing Cache Usage for Intel Pentium 4 Processors’).

* UseMMX technology instructions and registersif the computations can be donein
SIMD integer for shuffling data.

* Use MMX technology instructions and registers or for copying data that is not
used later in SIMD floating-point computations.

5-1

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Use the reciprocal instructions followed by iteration for increased accuracy. These
instructions yield reduced accuracy but execute much faster. Note the following:

— If reduced accuracy is acceptable, use them with no iteration.
— If near full accuracy is needed, use a Newton-Raphson iteration.

— If full accuracy is needed, then use divide and square root which provide more
accuracy, but slow down performance.

Planning Considerations

Whether adapting an existing application or creating a new one, using SIMD
floating-point instructions to achieve optimum performance gain requires
programmers to consider several issues. In general, when choosing candidates for
optimization, look for code segments that are computationally intensive and
floating-point intensive. Also consider efficient use of the cache architecture.

The sections that follow answer the questions that should be raised before
implementation:

Which part of the code benefits from SIMD floating-point instructions?
Is the current algorithm the most appropriate for SIMD floating-point instructions?
I's the code floating-point intensive?

Do either single-precision floating-point or double-precision floating- point
computations provide enough range and precision?

Isthe data arranged for efficient utilization of the SIMD floating-point registers?

Is this application targeted for processors without SIMD floating-point
instructions?

For more details, see the section on “Considerations for Code Conversion to SIMD
Programming” in Chapter 3.

Detecting SIMD Floating-point Support

Applications must be able to determine if SSE are available. Please refer the section
“ Checking for Processor Support of SIMD Technologies’ in Chapter 3 for the
techniques to determine whether the processor and operating system support SSE.

intel.

5-2

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Using

SIMD Floating-point with x87 Floating-point

Because the XMM registers used for SIMD floating-point computations are separate
registers and are not mapped onto the existing x87 floating-point stack, SIMD
floating-point code can be mixed with either x87 floating-point or 64-bit SIMD integer
code.

Scalar Floating-point Code

There are SIMD floating-point instructions that operate only on the least-significant
operand in the SIMD register. These instructions are known as scalar instructions.
They adlow the XMM registers to be used for genera -purpose floating-point
computations.

In terms of performance, scalar floating-point code can be equivalent to or exceed x87
floating-point code, and has the following advantages:

e SIMD floating-point code uses aflat register model, whereas x87 floating-point
code uses a stack model. Using scalar floating-point code eliminates the need to
use f xch instructions, which has some performance limit on the Intel Pentium 4
processor.

* Mixing with MMX technology code without penalty.
* Flush-to-zero mode.
* Shorter latencies than x87 floating-point.

When using scalar floating-point instructions, it is not necessary to ensure that the data
appearsin vector form. However, all of the optimizations regarding alignment,
scheduling, instruction selection, and other optimizations covered in Chapters 2 and 3
should be observed.

Data Alignment

SIMD floating-point datais 16-byte aligned. Referencing unaligned 128-hit SIMD
floating-point datawill result in an exception unless the novups or movupd (move
unaligned packed single or unaligned packed double) instruction is used. The
unaligned instructions used on aligned or unaligned datawill also suffer a performance
penalty relative to aligned accesses.

5-3

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Refer to section “ Stack and Data Alignment” in Chapter 3 for more information.

Data Arrangement

Because the SSE and SSE2 incorporate a SIMD architecture, arranging the data to
fully use the SIMD registers produces optimum performance. This implies contiguous
data for processing, which leads to fewer cache misses and can potentially quadruple
the data throughput when using SSE, or twice the throughput when using SSE2. These
performance gains can occur because four data element can be loaded with 128-bit
load instructionsinto XM M registers using SSE (novaps — move aigned packed single
precision). Similarly, two data element can loaded with 128-bit load instructions into
XMM registers using SSE2 (movapd —move aligned packed double precision).

Refer to the “ Stack and Data Alignment” in Chapter 3 for data arrangement
recommendations. Duplicating and padding techniques overcome the misalignment
problem that can occur in some data structures and arrangements. This increases the
data space but avoids the expensive penalty for misaligned data access.

For some applications, the traditional data arrangement requires some changesto fully
utilize the SIMD registers and parallel techniques. Traditionally, the data layout has
been an array of structures (AoS). To fully utilize the SIMD registers, a new data
layout has been proposed—a structure of arrays (SoA) resulting in more optimized
performance.

Vertical versus Horizontal Computation

Traditionally, the AoS data structure is used in 3D geometry computations. SIMD
technology can be applied to AoS data structure using a horizontal computation
technique. This means that the x, y, z, and w components of a single vertex structure
(that is, of asingle vector simultaneously referred to as an xyz data representation, see
the diagram below) are computed in parallel, and the array is updated one vertex at a
time.

5-4

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Table 5-1

To optimally utilize the SIMD registers, the data structure can be organized in the SoA
format. The SOA data structure enables a vertical computation technique, and is
recommended over horizontal computation, for the following reasons:

* When computing on asingle vector (xyz), itis common to use only a subset of the
vector components; for example, in 3D graphics the wcomponent is sometimes
ignored. This means that for single-vector operations, 1 of 4 computation slotsis
not being utilized. Thistypically resultsin a 25% reduction of peak efficiency.

* It may become difficult to hide long latency operations. For instance, another
common function in 3D graphicsis normalization, which requires the computation
of areciprocal square root (that is, 1/sgrt). Both the division and square root are
long latency operations. With vertical computation (SoA), each of the 4
computation slotsin a SIMD operation is producing a unique result, so the net
latency per slot isL/4 where L isthe overall latency of the operation. However, for
horizontal computation, the 4 computation slots each produce the same result,
hence to produce 4 separate results requires a net latency per slot of L.

To utilize all 4 computation slots, the vertex data can be reorganized to allow
computation on each component of 4 separate vertices, that is, processing multiple
vectors simultaneously. This can also be referred to as an SoA form of representing
vertices data shown in Table 5-1.

SoA Form of Representing Vertices Data

VX array X1 X2 X3 X4 L. Xn
Vy array Y1 Y2 Y3 Yda L. Yn
Vz array Z1 Z2 Z3 Yya ... Zn
Vw array w1 w2 W3 w4 L Wn

Organizing datain this manner yields a unique result for each computational slot for
each arithmetic operation.

Vertical computation takes advantage of the inherent parallelism in 3D geometry
processing of vertices. It assigns the computation of four vertices to the four compute
slots of the Pentium I1I processor, thereby eliminating the disadvantages of the
horizontal approach described earlier. The dot product operation implements the SoA
representation of vertices data. A schematic representation of dot product operation is
shown in Figure 5-1.

5-5

Intel Pentium 4 Processor Optimization

Optimizing for SMD Floating-point Applications 5

Figure 5-1 Dot Product Operation

Example 5-1

X1 X2 X3 X4
X Fx Fx Fx Fx
+ Y1 Y2 Y3 Y4
X Fy Fy Fy Fy
+ Z1 Z2 Z3 Z4
X Fz Fz Fz Fz
+ w1 w2 W3 w4
X Fw Fw Fw Fw
= R1 R2 R3 R4

Figure 5-1 shows how 1 result would be computed for 7 instructions if the data were
organized as AoS: 4 results would require 28 instructions.

Pseudocode for Horizontal (xyz, AoS) Computation

nmul ps
movaps
shuf ps
addps
movaps
shuf ps
addps

1

X*xX', y*y', z*z’

reg->reg nove,

get b,a,d,c froma,b,c,d

get a+b, a+b, c+d, c+d

reg->reg nove

get c+d, c+d, a+b, a+tb from pri or addps
get at+b+c+d, atb+c+d, a+b+c+d, a+b+c+d

since next steps overwite

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Now consider the case when the data is organized as SoA. Example 5-2 demonstrates
how 4 results are computed for 5 instructions.

Example 5-2 Pseudocode for Vertical (xxxx, yyyy, zzzz, SoA) Computation

mulps ; x*x’ for all 4 x-conponents of 4 vertices
mulps ; y*y for all 4 y-conponents of 4 vertices
mulps ; z*z' for all 4 z-conponents of 4 vertices
addps ; x*x' + y*y’

addps ; x*X’ +y*y’ +z*z’

For the most efficient use of the four component-wide registers, reorganizing the data
into the SoA format yields increased throughput and hence much better performance
for the instructions used.

As can be seen from this simple example, vertica computation yielded 100% use of
the available SIMD registers and produced 4 results. (The results may vary based on
the application.) If the data structures must be in aformat that is not “friendly” to
vertical computation, it can be rearranged “on the fly” to achieve full utilization of the
SIMD registers. This operation is referred to as “ swizzling” operation and the reverse
operation isreferred to as “ deswizzling.”

Data Swizzling

Swizzling datafrom one format to another isrequired in many algorithms. An example
of thisis AoS format, where the vertices come as xyz adjacent coordinates.
Rearranging them into SoA format, xxxx, yyyy, zzzz, allows more efficient SIMD
computations. For efficient data shuffling and swizzling use the following instructions:
* novl ps, novhps load/store and move data on half sections of the registers

® shuf ps, unpackhps, and unpackl ps unpack data

To gather data from 4 different memory locations on the fly, follow steps:

1. Identify thefirst half of the 128-bit memory location.

2. Group the different halves together using the novl ps and novhps to form an xyxy
layout in two registers

3. From the 4 attached halves, get the xxxx by using one shuffle, theyyyy by using
another shuffle.

5-7

Intel Pentium 4 Processor Optimization

Optimizing for SMD Floating-point Applications 5

The zzzz isderived the same way but only requires one shuffle.

Example 5-3 illustrates the swizzle function.

Example 5-3 Swizzling Data

typedef struct _VERTEX_ACS {
float x, y, z, color;
} Vertex_aos; /1 A0S structure declaration
typedef struct _VERTEX SQA {
float x[4], float y[4], float z[4];
float color[4];
} Vertex_soa; /'l SoA structure declaration
void swi zzl e_asm (Vertex_aos *in, Vertex_soa *out)
{
/1 in mem x1lylziwl-x2y2z2w2-x3y3z3w3- x4y4z4wa-
[l SWZZLE XYZW --> XXXX
asm {
nov ecx, in /| get structure addresses
nov edx, out

yl x1
novhps xmv, [ecx+16] [l xmmv7 = y2 x2 yl1 x1
novl ps xmD, [ecx+32] /[l xmmD = -- -- y3 x3
novhps xmD, [ecx+48] /1 xnmmD = y4 x4 y3 x3
novaps xmb, xmv [l xmm6 = y1 x1 yl1 x1

shuf ps xmmv7, xnmD, 0x88 [l xmm7 = x1 x2 x3 x4 => X
shuf ps xm6, xmm0, OxDD [l xmm6 =yl y2 y3 y4 => Y

novl ps xm®2, [ecx+8] [l xmR = -- -- wl z1
novhps xm®2, [ecx+24] [l xmm2 = w2 z2 ul z1
novl ps xmil, [ecx+40] [l xmml = -- -- s3 z3
novhps xmml, [ecx+56] [l xnmml = w4 z4 w3 z3
continued
"Ttel o 5-8

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Example 5-3 Swizzling Data (continued)

novaps xm®O, xm?P [l xmm0 = wl z1 wl z1

shuf ps xmm®2, xnmil, 0x88 [l xnmmR = z1 z2 z3 z4 => Z

novl ps xmv, [ecx] [l xm7 = -- --shufps xm0, xmmil,
/1 OxDD xmm6 = wl w2 w3 w4 => W

novaps [edx], xmmv /'l store X

novaps [edx+16], xmb /'l store Y

novaps [edx+32], xmmR2 /'l store Z

novaps [edx+48], xmD /'l store W

Il SWZZLE XYZ -> XXX

Example 5-4 shows the same data -swizzling agorithm encoded using the Intel® C++
Compiler’sintrinsics for SSE.

Example 5-4 Swizzling Data Using Intrinsics

[l1ntrinsics version of data sw zzle
void swizzle_intrin (Vertex_aos *in, Vertex_soa *out, int stride)

{
_ m28 x, y, z, w,
_ nml28 tnp;
x = _mmloadl _pi(x,(__nB4 *)(in));
x = _mm_ | oadh_pi (x, (__nB4 *)(stride + (char *)(in)));
y = _mm/loadl _pi(y,(__nb4 *)(2*stride+(char *)(in)));
y = _mmloadh_pi(y,(__nm64 *)(3*stride+(char *)(in)));
tnp = _nm shuffle_ps(x, y, _MM SHUFFLE(2, 0, 2, 0));
y = _mmshuffle_ps(x, y, _MM SHUFFLE(3, 1, 3, 1));
X = tnp;

continued

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Example 5-4 Swizzling Data Using Intrinsics (continued)

z = _mmloadl _pi(z,(_nmb4 *)(8 + (char *)(in)));

= _mmloadh_pi(z, (__nb64 *)(stride+8+(char *)(in)));
= mmloadl _pi(w (__nbB4 *)(2*stride+8+(char*)(in)));
_mm | oadh_pi (w, (__nB4 *)(3*stride+8+(char*)(in)));
tnp = _nm shuffle_ps(z, w, _MM SHUFFLE(2, 0, 2, 0));
w = _mmshuffle_ps(z, w, _MMSHUFFLE(3, 1, 3, 1));
z = tnp;

_mm store_ps(&out->x[0], X);

N

=

=
Il

_mm store_ps(&out->y[0], y);
_mm store_ps(&out->z[0], 2z);
_mmstore_ps(&out->w 0], wW;

A CAUTION. Avoid creating a dependence chain from previous
computations because the novhps/novl ps instructions bypass one
part of the register. The same issue can occur with the use of an
exclusive-OR function within an inner loop in order to clear a
register:
xorps xnmO, xmmD ; Al 0's witten to xmD

Although the generated result of all zeros does not depend on the specific data
contained in the source operand (that is, XOR of aregister with itself always produces
all zeros), the instruction cannot execute until the instruction that generates xmo has
completed. In the worst case, this creates a dependence chain that links successive
iterations of the loop, even if those iterations are otherwise independent. The
performance impact can be significant depending on how many other independent
intra-loop computations are performed. Note that on the Pentium 4 processor, the
SIMD integer pxor instructions, if used with the same register, do break the
dependence chain, eliminating fal se dependencies when clearing registers.

intel ® 5-10

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

The same situation can occur for the above movhps/nmovl ps/shuf ps sequence. Since
each movhps/movl ps instruction bypasses part of the destination register, the
instruction cannot execute until the prior instruction that generates this register has
completed. Aswith the xor ps example, in the worst case this dependence can prevent
successive loop iterations from executing in parallel.

A solution isto include a 128-bit load (that is, from adummy local variable, such as

t mp in Example 5-4) to each register to be used with anovhps/novl ps instruction. This
action effectively breaks the dependence by performing an independent load from a
memory or cached location.

Data Deswizzling

In the deswizzle operation, we want to arrange the SoA format back into AoS format
so the xxxx, yyyy, zzzz are rearranged and stored in memory asxyz. To do thiswe can
use the unpck! ps/unpckhps instructions to regenerate the xyxy layout and then store
each half (xy) into its corresponding memory location using novl ps/movhps followed
by another novl ps/movhps to store the z component.

Example 5-5 illustrates the deswizzle function:

Example 5-5 Deswizzling Single-Precision SIMD Data

voi d desw zzl e_asm(Vertex_soa *in, Vertex_aos *out)

{
__asm{
nov ecx, in /1 load structure addresses
nov edx, out
novaps xmm7, [ecx] /1l load x1 x2 x3 x4 => xmv

novaps xm6, [ecx+16] /1 load yl y2 y3 y4 => xmb
novaps xmb, [ecx+32] /1 load z1 z2 z3 z4 => xmb
novaps xnmmd, [ecx+48] /1l load w1 w2 w3 w4 => xm#

continued

Inte|® 5-11

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Example 5-5 Deswizzling Single-Precision SIMD Data (continued)

/1 START THE DESW ZZL| NG HERE

novaps xm0, xnmv /[l xmmD= x1 x2 x3 x4
unpckl ps xmv, xmmb [l xmm7= x1 yl x2 y2
novl ps [edx], xmmv /1 vl = x1 vyl -- --
novhps [edx+16], xmmv [l v2 = x2 y2 -- --
unpckhps xm®D, xmmb [l xmD= x3 y3 x4 y4

novl ps [edx+32], xmD /1 v3 = x3 y3 -- --
novhps [edx+48], xmmD /'l v4 = x4 y4 -- --

novaps xm0, xnmb /'l xmm0= z1 z2 z3 z4
unpckl ps xmb, xm4 [l xmb= z1 wl z2 w2
unpckhps xm®0, xmm4 [l xmD= z3 W3 z4 w4
novl ps [edx+8], xmb /1 vl = x1 yl z1 wl
novhps [edx+24], xmb [l v2 = x2 y2 z2 W2
novl ps [edx+40], xmmD /1 v3 = x3 y3 z3 w3
novhps [edx+56], xmmD Il v4 = x4 y4 z4 W4

/1 DESW ZZLI NG ENDS HERE
}

You may have to swizzle datain the registers, but not in memory. This occurs when
two different functions need to process the datain different layout. In lighting, for
example, datacomesasrrrr gggg bbbb aaaa, and you must deswizzle them into r gba
before converting into integers. In this case you use the movl hps/ movhl ps instructions
to do thefirst part of the deswizzlefollowed by shuf f | e instructions, see Example 5-6

and Example 5-7.

5-12

Intel Pentium 4 Processor Optimization

Optimizing for SMD Floating-point Applications 5

Example 5-6

Deswizzling Data Using the movlhps and shuffle Instructions

voi d desw zzl e_rgb(Vertex_soa *in, Vertex_aos *out)

{

/l---desw zzl e rgb---

/1 assune: xmmil=rrrr, xmmR=gggg, xmB=bbbb, xmmi=aaaa
__asm{

nov ecx, in /1 1oad structure addresses

nov edx, out

nmovaps xmrl, [ecx] /1 load rl r2 r3 r4 => xml

novaps xm2, [ecx+16] /1 load gl g2 g3 g4 => xmR

nmovaps xmB, [ecx+32] /1 load bl b2 b3 b4 => xmB

novaps xm#, [ecx+48] /!l load al a2 a3 a4 => xm4d
/] Start deswi zzling here

novaps xmmi, xmd /[l xmm7= al a2 a3 a4

novhl ps xmmi7, xmmB /'l xmmi7= b3 b4 a3 a4

novaps xmb, xmP /'l xmr6= gl g2 g3 g4

nmovl hps xmmB, xnmy /1 xmmB= bl b2 al a2

novhl ps xm®2, xml /1 xmm= r3 r4 g3 g4

nmovl hps xnml, xnmb /1 xmml=rl r2 gl g2

nmovaps xmm6, xmR /'l xmm6= r3 r4 g3 g4

nmovaps xmb, xmil /1l xmb=rl r2 gl g2

shuf ps xmm®2, xmm¥7, OxDD // xmmR2= r4 g4 b4 a4

shuf ps xnml, xnmB, 0x88 // xm¥=rl gl bl al

shuf ps xmmb, xnmB, 0x88 // xmb= r2 g2 b2 a2

shuf ps xm®, xmmi7, OxDD // xmmb= r3 g3 b3 a3

nmovaps [edx], xnmd /1 vl =7r1 gl bl a1l

novaps [edx+16], xnmb /'l v2 =r2 g2 b2 a2

novaps [edx+32], xnmb /1 v3 =r3 g3 b3 a3

continued
"Ttel ® 5-13

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Example 5-6 Deswizzling Data Using the movlhps and shuffle Instructions (continued)

novaps [edx+48], xmmR2 /'l v4 =r4 g4 b4 a4
/1 DESW ZZLI NG ENDS HERE

}
}

Example 5-7 Deswizzling Data 64-bit Integer SIMD Data

voi d nmmx_deswi zzl e(1 Vertex_soa *in, |Vertex_aos *out)

{
__asm{

nmov ebx, in

nov edx, out

novg mD, [ebx] /1 mO0= ul u2
novg nmml, [ebx+16] [l ml= vl v2
novg mm2, mD /1 m2= ul u2
punpckhdg m0D, il /1 mO0= ul vl
punpckl dg m2, il [l mO0= u2 v2
novqg [edx], nmR /'l store ul vl
novqg [edx+8], mD /'l store u2 v2
novg mMm#, [ebx+8] /1 mO0= u3 u4
novg mMb, [ebx+24] /1 mrml= v3 v4
novg mMm®b, mm /[l m2= u3 u4
punpckhdg mm4, mmb /1l mO0= u3 v3
punpckl dg mMm®, mmb /1 mO0= u4 v4
novqg [edx+16], mmb /] store u3v3
novq [edx+24], md /'l store u4v4

}
}

intel ® 5-14

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Using MMX Technology Code for Copy or Shuffling Functions

If there are some parts in the code that are mainly copying, shuffling, or doing logical
manipulations that do not require use of SSE code, consider performing these actions
with MMX technology code. For example, if texture datais stored in memory as SoA
(uuuu, vvvv) and they need only to be deswizzled into AoS layout (uv) for the graphic
cards to process, you can use either the SSE or MM X technology code. Using the
MM X instructions allow you to conserve XMM registers for other computational
tasks.

Example 5-8 illustrates how to use MM X technology code for copying or shuffling.

Example 5-8 Using MMX Technology Code for Copying or Shuffling

novq mm0, [Uarray+ebx] ;o mD= ul u2
novq nml, [Varray+ebx] ;omil= vl v2
nmovq m2, mo ;o mMm2= ul u2
punpckhdg m0O, nml ;o mD= ul vl
punpckldg m2, nmi ;M= u2 v2
novq [Coor ds+edx], mD ; store ul vl
novq [Coor ds+8+edx], mmR ; store u2 v2
novq mmd, [Uarray+8+ebx] ; mmi= u3 u4
novq nmb, [Varray+8+ebx] ; mb= v3 v4
novq b, my ;. m6= u3 u4
punpckhdg m4, nmb ;M= u3 v3
punpckl dg mm®6, nmb ;o mMmb= ud v4
novq [Coords+16+edx], m% ; store u3 v3
novq [Coords+24+edx], mb ; store u4 v4

Horizontal ADD

Although vertical computations use the SIMD performance better than horizontal
computations do, in some cases, the code must use a horizontal operation. The

movl hps/ nmovhl ps and shuffle can be used to sum data horizontally. For example,
starting with four 128-hit registers, to sum up each register horizontally while having

"Ttel ® 5-15

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

the final resultsin one register, use the movl hps/ movhl ps instructionsto align the
upper and lower parts of each register. This allows you to use avertical add. With the
resulting partial horizontal summation, full summation follows easily. Figure 5-2
schematically presents horizontal add using movhlps/movlhps, while Example 5-9 and
Example 5-10 provide the code for this operation.

Figure 5-2 Horizontal Add Using movhlps/movlhps

XmmO xmml Xmm2 xmm3

MOVLHPS MOVHLPS MOVLHPS MOVHLPS

ADDPS ADDPS

SHUFPS SHUFPS

ADDPS

tel) 5-16

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Example 5-9 Horizontal Add Using movhlps/movlhps

void horiz_add(Vertex_soa *in, float *out) {

__asm{
nov ecx, in /1 1oad structure addresses
nov edx, out
novaps xmD, [ecx] /1l load AL A2 A3 A4 => xmD

novaps xmml, [ecx+16] /1 load Bl B2 B3 B4 => xmril

novaps xmR, [ecx+32] /1l load C1 C2 C3 &4 => xmR

novaps xmB, [ecx+48] /1l load D1 D2 D3 D4 => xmB
/1 START HORI ZONTAL ADD

novaps xnmb, xmmD /'l xmb= Al, A2, A3, Ad

novl hps xnmb, xmridl /1 xnmmb= Al, A2, B1, B2

novhl ps xnml, xmmD /] xmrl= A3, A4, B3, B4

addps xmb, xmmil /1 xmb= Al+A3, A2+A4, B1+B3, B2+B4
movaps xmmd, xmP

novl hps xnmR2, xmmB /1 xnmmR= C1, C2, D1, D2

novhl ps xmmB, xmm /'l xmmB= C3, C4, D3, D4

addps xmB, xmR /'l xmmB= Cl+C3, C2+C4, D1+D3, D2+D4
novaps xmmbB, xmmB /1 xmB= C1+C3, C2+C4, D1+D3, D2+D4

shuf ps xmB, xmb, O0xDD
[I xnmb6=A1+A3, B1+B3, C1+C3, D1+D3
shuf ps xmmb, xnm6, 0x88
[xmb= A2+A4, B2+B4, C2+C4, D2+D4
addps xnmB, xmmb /'l xmm6= D, C, B, A
/1 END HORI ZONTAL ADD
novaps [edx], xmb

"Ttel ® 5-17

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Example 5-10 Horizontal Add Using Intrinsics with movhlps/movlhps

void horiz_add_intrin(Vertex_soa *in, float *out)

{
_ m28 v1, v2, v3, v4;
_ m28 tmoO, t i, t M2, t mB, t mm, t b, t Mb;
/'l Tenporary vari abl es
tr0 = _mm | oad_ps(in->x); /1 tmmD = A1 A2 A3 A4
trml = _mm.| oad_ps(in->y); // tmml = B1 B2 B3 B4
tm®2 = _mm.| oad_ps(in->z); /[l tmm = Cl C2 C3 4
trmB = _mm.| oad_ps(in->w); /l trmB8 = D1 D2 D3 D4
tmmb = t MmD; [l tnmD = Al A2 A3 A4
trmb = _mm novel h_ps(tmb, tml); // tmmb = Al A2 Bl B2
trmml = _mm novehl _ps(tmil, tmm®D); // tmml = A3 A4 B3 B4
trmb = _mm add_ps(t mb, tmm); /'l tmmb = Al+A3 A2+A4 B1+B3 B2+B4
tmd = tme;
trm2 = _mmnovel h_ps(tm®, tmB); // tm2 = C1 C2 D1 D2
trmB = _mm novehl _ps(tmB, tmd); // tmB = C3 C4 D3 D4
trmB = _mm add_ps(tmB, tmR); /[l tmB8 = C1+C3 C2+C4 D1+D3 D2+D4
tmmé = tmsB; /1 tmm6 = Cl+C3 C2+C4 D1+D3 D2+D4
trm6 = _mm shuffle_ps(tm8, tmmb, OxDD);
/] tmmb = Al+A3 B1+B3 Cl1+C3 D1+D3
trmb = _mm shuffle_ps(tmmb, tnmm6, 0x88);
/1 tmmb = A2+A4 B2+B4 C2+C4 D2+D4
trm6 = _mm add_ps(tmb, tmb);
/[l tmb = Al+A2+A3+A4 B1l+B2+B3+B4
/] Cl+C2+C3+C4 D1+D2+D3+D4
_mm store_ps(out, tm®);
}

intel ® 5-18

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

Use of cvttps2pi/cvttss2si Instructions

Thecvtt ps2pi and cvt t ss2si instructions encode the truncate/chop rounding mode
implicitly in the instruction, thereby taking precedence over the rounding mode
specified in the MXCSR register. This behavior can eliminate the need to change the
rounding mode from round-nearest, to truncate/chop, and then back to round-nearest to
resume computation. Frequent changes to the MXCSR register should be avoided since
thereis a penalty associated with writing this register; typically, through the use of the
cvtt ps2pi and cvtt ss2si instructions, the rounding control in MXCSR can be aways
be set to round-nearest.

Flush-to-Zero Mode

Activating the flush-to-zero mode has the following effects during underflow
situations:

* Precision and underflow exception flags are set to 1
* Zeroresultisreturned

The |EEE mandated response to underflow isto deliver the denormalized result (that
is, gradual underflow); consequently, the flush-to-zero mode is not compatible with
|IEEE Standard 754. It is provided to improve performance for applications where
underflow is common and where the generation of a denormalized result is not
necessary. Underflow for flush-to-zero mode occurs when the exponent for a
computed result falls in the denormal range, regardless of whether aloss of accuracy
has occurred.

Unmasking the underflow exception takes precedence over flush-to-zero mode. For a
SSE instruction that generates an underflow condition an exception handler isinvoked.

5-19

Intel Pentium 4 Processor Optimization Optimizing for SMD Floating-point Applications 5

intel ® 5-20

Optimizing Cache Usage

for

Processors

Intel Pentium 4

Over the past decade, processor speed has increased more than ten times, while
memory access speed has increased only twice. This disparity makesit important to
tune applications so that a majority of the data accesses are fulfilled in the processor
caches. The performance of most applications can be considerably improved if the data
they require can be fetched from the processor caches rather than from main memory.

Standard techniques to bring data into the processor before it is needed involves
additional programming which can be difficult to implement and may require special
steps to prevent performance degradation. The Streaming SIMD Extensions addressed
these issues by providing the various prefetch instructions. The Intel Pentium 4
processor extends prefetching support via an automatic hardware data prefetch, a new
mechanism for data prefetching based on current data access patterns that does not
require programmer intervention.

Streaming SIMD Extensions also introduced the various non-temporal store
instructions. Streaming SIMD Extensions 2 extend this support to the new data types,
and also introduces non-temporal store support for the 32-bit integer registers.

This chapter focuses on two major subjects:

* Prefetch and Cacheability Instructions: discussion about the instructions that allow
you to affect data caching in an application.

* Memory Optimization Using Prefetch and Cacheability Instructions: discussion
and examples of various techniques for implementing memory optimizationsusing
these instructions.

6-1

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

% NOTE. Ina number of cases presented in this chapter, the
_

prefetching and cache utilization are Pentium 4 processor
platform-specific and may change for the future processors.

General Prefetch Coding Guidelines

The following guidelines will help you optimize the usage of prefetchesin your code
(specific details will be discussed in subsequent sections):

Use a current-generation compiler, such as the Intel C++ Compiler that supports
C++ language-level features for the Streaming SIMD Extensions. The Streaming
SIMD Extensions and MM X technology instructions provide intrinsics that allow
you to optimize cache utilization. The examples of such Intel compiler intrinsics
are_nm prefetch, _mmstreamand nm | oad, _nm sfence. For more details on
these intrinsics, refer to the Intel C++ Compiler User’s Guide, doc. number
718195.

Facilitate compiler optimization:

— Minimize use of global variables and pointers.

— Minimize use of complex control flow.

— Usethe const modifier, avoid r egi st er modifier.

— Choose data types carefully (see below) and avoid type casting.

Optimize prefetch scheduling distance —

— Far ahead enough to alow interim computation to overlap memory access
time

— Near enough that the prefetched data is not replaced from the data cache

Use prefetch concatenation:

— Arrange prefetches to avoid unnecessary prefetches at the end of an inner loop
and to prefetch the first few iterations of the inner loop inside the next outer
loop.

6-2

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

* Minimize the number of prefetches:

— Prefetch instructions are not completely free in terms of bus cycles, machine
cycles and resources. Excessive usage of prefetches can adversely impact
application performance.

* Interleave prefetch with computation instructions:

— For best performance, prefetch instructions must be interspersed with other
computational instructions in the instruction sequence rather than clustered
together.

* Use cache blocking techniques (for example, strip mining):

— Improve cache hit rate by using cache blocking techniques such as
strip-mining (one dimensional arrays) or loop blocking (two dimensional
arrays)

* Balance single-pass versus multi-pass execution:

— Anagorithm can use single- or multi-pass execution defined as follows:
single-pass, or unlayered execution passes a single data element through an
entire computation pipeline. Multi-pass, or layered execution performs a
single stage of the pipeline on a batch of data elements before passing the
entire batch on to the next stage.

— Generd guideline: if your algorithm is single pass, use pr ef et chnt a; if your
algorithm is multi-pass use pr ef et cht 0.

* Resolve memory bank conflict issues:

— Minimize memory bank conflicts by applying array grouping to group
contiguously used data together or alocating data within 4KB memory pages.

* Resolve cache management issues:

— Minimize disturbance of temporal data held within the processor’s caches by
using streaming store instructions, as appropriate

Prefetch and Cacheability Instructions

The prefetch instruction, inserted by the programmers or compilers, accesses a
minimum of one cache line of data (128 bytes on the Pentium 4 processor) prior to that
data actually being needed. This hides the latency for data access in the time required

intgl. 63

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

to process data already resident in the cache. Many algorithms can provide information
in advance about the data that is to be required soon. In cases where the memory
accesses are in long, regular data patterns, the automatic hardware prefetcher can hide
memory access latency without the need for software prefetches.

The cacheability control instructions alow you to control data caching strategy in
order to increase cache efficiency and minimize cache pollution.

Data reference patterns can be classified as follows:
Temporal datawill be used again soon
Spatid datawill be used in adjacent locations, for example, same cache line

Non-temporal datawhich is referenced once and not reused in the immediate
future; for example, some multimedia data types, such as the vertex
buffer in a 3D graphics application.

These data characteristics are used in the discussions that follow.

Prefetch

This section discusses the mechanics of the software prefetch instructions and the
automatic hardware prefetcher.

Software Data Prefetch

The pr ef et ch instruction can hide the latency of data access in performance-critical
sections of application code by allowing data to be fetched in advance of its actual
usage. The pr ef et ch instructions do not change the user-visible semantics of a
program, although they may affect the program’s performance. The pr ef et ch
instructions merely provide a hint to the hardware and generally will not generate
exceptions or faults.

The pr ef et ch instructions load either non-temporal data or temporal datain the
specified cache level. This data access type and the cache level are specified as a hint.
Depending on the implementation, the instruction fetches 32 or more aligned bytes,
including the specified address byte, into the instruction-specified cache levels.

6-4

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

The pr ef et ch instruction isimplementation-specific; applications need to be tuned to
each implementation to maximize performance.

% NOTE. Using the pref et ch instructions is recommended only if
e data does not fit in cache.

The pr ef et ch instructions merely provide a hint to the hardware, and they will not
generate exceptions or faults except for afew special cases (seethe “Prefetch and
L oad Instructions” section). However, excessive use of prefetch instructions may
waste memory bandwidth and result in performance penalty due to resource
constraints.

Nevertheless, the prefetch instructions can lessen the overhead of memory transactions
by preventing cache pollution and by using the caches and memory efficiently. Thisis
particularly important for applications that share critical system resources, such asthe
memory bus. See an examplein the "Video Encoder” section.

Thepr ef et ch instructions are mainly designed to improve application performance by
hiding memory latency in the background. If segments of an application access datain
apredictable manner, for example, using arrays with known strides, then they are good
candidates for using prefetch to improve performance.

Usethe pr ef et ch instructionsin:

* predictable memory access patterns

* time-consuming innermost loops

* |ocations where the execution pipeline may stall if datais not available.

Hardware Data Prefetch

The Pentium 4 processor implements an automatic data prefetcher which monitors
application data access patterns and prefetches data automatically. This behavior is
automatic and does not require programmer’s intervention.

Characteristics of the hardware data prefetcher are:
* Attemptsto stay 256 bytes ahead of current data access locations

e®

6-5

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

* Follows only one stream per 4K page (load or store)

e Can prefetch up to 8 simultaneous independent streams from eight different 4K
regions

* Does not prefetch across 4K boundary; note that thisis independent of paging
modes.

* Fetches datainto second/third-level cache
* Doesnot prefetch UC or WC memory types

* Followsload and store streams. Issues Read For Ownership (RFO) transactions for
store streams and Data Reads for |oad streams.

The Prefetch Instructions — Pentium 4 Processor Implementation

Streaming SIMD Extensions include four flavors of pr ef et ch instructions, one
non-temporal, and three temporal. They correspond to two types of operations,
temporal and non-temporal.

% NOTE. Atthetimeof pref et ch, if the data is already found in a
= cache level that is closer to the processor than the cache level
specified by the instruction, no data movement occurs.

The non-temporal instruction is

prefetchnta Fetch the datainto the second-level cache, minimizing cache
pollution.

The temporal instructions are

prefetcht0 Fetch the datainto all cache levels, that is, to the second-level cache
for the Pentium 4 processor

prefetcht1 Identical to prefetcht0
prefetcht?2 Identical to prefetcht0
|nte|® 6-6

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Table 6-1 lists the prefetch implementation differences between the Pentium 11 and
Pentium 4 processors.

Table 6-1 Prefetch Implementation: Pentium Il and Pentium 4 Processors

Prefetch Type Pentium lll processor Pentium 4 processor
Prefetch NTA Fetch 32 bytes Fetch 128 bytes
Fetch into 1st- level cache Do not fetch into 1st-level cache
Do not fetch into 2nd-level cache Fetch into 1 way of 2nd-level cache
PrefetchTO Fetch 32 bytes Fetch 128 bytes
Fetch into 1st- level cache Do not fetch into 1st-level cache
Fetch into 2nd- level cache Fetch into 2nd- level cache
PrefetchT1, Fetch 32 bytes Fetch 128 bytes
PrefetchT2 Fetch into 2nd- level cache only Do not fetch into 1st-level cache
Do not fetch into 1st-level cache Fetch into 2nd- level cache only

Prefetch and Load Instructions

The Pentium 4 processor has a decoupled execution and memory architecture that
allows instructions to be executed independently with memory accessesiif there are no
data and resource dependencies. Programs or compilers can use dummy load
instructions to imitate prefetch functionality, but preloading is not completely
equivalent to prefetch instructions. Prefetch instructions provide agreater performance
than preloading.

Currently, the pr ef et ch instruction provides a greater performance gain than
preloading because it:

* has no destination register, it only updates cache lines.

* doesnot stall the normal instruction retirement.

* does not affect the functional behavior of the program.

* hasno cache line split accesses.

* does not cause exceptions except when LOCK prefix is used; the LOCK prefix isnot a
valid prefix for use with the pr ef et ch instructions and should not be used.

* does not complete its own execution if that would cause afault.

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

The current advantages of the prefetch over preloading instructions are
processor-specific. The nature and extent of the advantages may change in the future.

In addition there are a few cases where a prefetch instruction will not perform the data
prefetch if:

* theprefetch causesaDTLB (Data Translation Lookaside Buffer) miss.
® an access to the specified address causes a fault/exception.

* the memory subsystem runs out of request buffers between the first-level cache and
the second-level cache.

* thepref et ch targets an uncacheable memory region, for example, USWC and
UC.

* aLock prefix isused. This causes an invalid opcode exception.

Cacheability Control

This section covers the mechanics of the cacheability control instructions.

The Non-temporal Store Instructions

This section describes the behavior of streaming stores and reiterates some of the
information presented in the previous section. In Streaming SIMD Extensions, the
movnt ps, novnt pd, novnt g, movnt dg, novnti, masknmovg and nasknovdqu
instructions are streaming, non-temporal stores. With regard to memory characteristics
and ordering, they are similar mostly to the Write-Combining (WC) memory type:

* Write combining — successive writes to the same cache line are combined

* Wirite collapsing — successive writes to the same byte(s) result in only the last write
being visible

* Weakly ordered —no ordering is preserved between WC stores, or between WC stores
and other loads or stores

* Uncacheable and not write-all ocating — stored data is written around the cache and
will not generate a read-for-ownership bus request for the corresponding cache
line.

6-8

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Fencing

Because streaming stores are weakly ordered, afencing operation is required to ensure
that the stored data is flushed from the processor to memory. Failure to use an
appropriate fence may result in data being “trapped” within the processor and will
prevent visibility of this data by other processors or system agents. WC stores require
software to ensure coherence of data by performing the fencing operation; see “The
fence Instructions” section for more information.

Streaming Non-temporal Stores

Streaming stores can improve performance in the following ways:
* |ncrease store bandwidth since they do not require read-for-ownership bus requests

* Reduce disturbance of frequently used cached (temporal) data, since they write
around the processor caches

Streaming stores allow cross-aliasing of memory types for a given memory region. For
instance, aregion may be mapped as write-back (WB) viathe page attribute tables (PAT)
or memory type range registers (MTRRS) and yet is written using a streaming store.

Memory Type and Non-temporal Stores

The memory type can take precedence over the non-temporal hint, leading to the
following considerations:

* If the programmer specifies a non-temporal store to strongly-ordered uncacheable
memory, for example, the Uncacheable (UC) or Write-Protect (WP) memory
types, then the store behaves like an uncacheable store; the non-temporal hint is
ignored and the memory type for the region is retained.

* If the programmer specifies the weakly-ordered uncacheable memory type of
Write-Combining (WC), then the non-temporal store and the region have the same
semantics, and there is no conflict.

6-9

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

* If the programmer specifies a non-temporal store to cacheable memory, for
example, Write-Back (vB) or Write-Through (\Wr) memory types, two cases may
result:

1. If the datais present in the cache hierarchy, the instruction will ensure
consistency. A particular processor may choose different ways to implement
this. The following approaches are probable: (a) updating data in-place in the
cache hierarchy while preserving the memory type semantics assigned to that
region, or (b) evicting the data from the caches and writing the new
non-temporal datato memory (with W semantics). Pentium Il processor
implements a combination of both approaches.

If the streaming store hitsalinethat is present in thefirst-level cache, the store
datawill be combined in place within the first-level cache. If the streaming
store hits aline present in the second-level, the line and stored datawill be
flushed from the second-level to system memory. Note that the approaches,
separate or combined, can be different for future processors. Pentium 4
processor implements the latter policy, of evicting the datafrom all processor
caches.

2. If the datais not present in the cache hierarchy, and the destination region is
mapped as VB or WI, the transaction will be weakly ordered, and is subject to
all we memory semantics. The non-temporal store will not write-allocate.
Different implementations may choose to collapse and combine these stores.

Write-Combining

Generally, Wc semantics require software to ensure coherence, with respect to other
processors and other system agents (such as graphics cards). Appropriate use of
synchronization and afencing operation (see “The fence Instructions’ later in this
chapter) must be performed for producer-consumer usage models. Fencing ensures
that all system agents have global visibility of the stored data; for instance, failure to
fence may result in awritten cache line staying within a processor, and the line would
not be visible to other agents.

For processors which implement non-temporal stores by updating data in-place that
already resides in the cache hierarchy, the destination region should also be mapped as
WC. Otherwise if mapped asWB or Wr, thereis a potential for speculative processor reads

6-10

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

to bring the datainto the caches; in this case, non-temporal stores would then updatein
place, and data would not be flushed from the processor by a subsequent fencing
operation.

The memory type visible on the bus in the presence of memory type aliasing is
implementation-specific. As one possible example, the memory type written to the bus
may reflect the memory type for the first store to this line, as seen in program order;
other aternatives are possible. This behavior should be considered reserved, and
dependence on the behavior of any particular implementation risks future
incompatibility.

Streaming Store Usage Models

The two primary usage domains for streaming store are coherent requests and
non-coherent requests.

Coherent Requests

Coherent requests are normal loads and stores to system memory, which may also hit
cache lines present in another processor in a multi-processor environment. With
coherent requests, a streaming store can be used in the same way as aregular store that
has been mapped with awc memory type (PAT or MTRR). An sf ence instruction must be
used within a producer-consumer usage model in order to ensure coherency and
visibility of data between processors.

Within asingle-processor system, the CPU can also re-read the same memory location
and be assured of coherence (that is, asingle, consistent view of this memory
location): the same istrue for a multi-processor (MP) system, assuming an accepted
MP software producer-consumer synchronization policy is employed.

Non-coherent requests

Non-coherent requests arise from an 1/0 device, such as an AGP graphics card, that
reads or writes system memory using non-coherent requests, which are not reflected on
the processor bus and thus will not query the processor’s caches. An sf ence
instruction must be used within a producer-consumer usage model in order to ensure
coherency and visibility of data between processors. In this case, if the processor is

6-11

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

writing datato the 1/0 device, a streaming store can be used with a processor with any
behavior of approach (a), page 6-10, above, only if the region has also been mapped
with awc memory type (PAT, MIRR).

A CAUTION. Failureto map the region as wc may allow the lineto
be speculatively read into the processor caches, that is, via the
wrong path of a mispredicted branch.

In case the region is not mapped as W, the streaming might update in-place in the
cache and a subsequent sf ence would not result in the data being written to system
memory. Explicitly mapping the region as W in this case ensures that any data read
from this region will not be placed in the processor’s caches. A read of this memory
location by anon-coherent 1/0O device would return incorrect/out-of-date results. For a
processor which solely implements approach (b), page 6-10, above, a streaming store
can be used in this non-coherent domain without requiring the memory region to also
be mapped as WB, since any cached datawill be flushed to memory by the streaming
store.

Streaming Store Instruction Descriptions

The movnt g/ movnt dg (non-temporal store of packed integer inan MM X technology or
Streaming SIMD Extensions register) instructions store data from aregister to
memory. The instruction isimplicitly weakly-ordered, does no write-allocate, and so
minimizes cache pollution.

The movnt ps (non-temporal store of packed single precision floating point) instruction
issimilar to movnt g. It stores datafrom a Streaming SIMD Extensions register to
memory in 16-byte granularity. Unlike movnt g, the memory address must be aligned to
a 16-byte boundary or a general protection exception will occur. Theinstruction is
implicitly weakly-ordered, does not write-allocate, and thus minimizes cache
pollution.

The masknmovg/ masknovdqu (non-temporal byte mask store of packed integer in an
MMX technology or Streaming SIMD Extensionsregister) instructions store datafrom
aregister to the location specified by the edi register. The most significant bit in each

6-12

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

byte of the second mask register is used to selectively write the data of thefirst register
on a per-byte basis. The instruction isimplicitly weakly-ordered (that is, successive
stores may not write memory in original program-order), does not write-allocate, and
thus minimizes cache pollution.

The f ence Instructions

The following fence instructions are available: sf ence, | f ence, and nf ence.

The sf ence Instruction

Thesfence (store fence) instruction makes it possible for every st or e instruction
that precedes the sf ence instruction in program order to be globally visible before any
st or e instruction that follows the sf ence. The sf ence instruction provides an
efficient way of ensuring ordering between routines that produce weakly-ordered
results.

The use of weakly-ordered memory types can be important under certain data sharing
relationships, such as a producer-consumer relationship. Using weakly-ordered
memory can make assembling the data more efficient, but care must be taken to ensure
that the consumer obtains the data that the producer intended to see. Some common
usage models may be affected in this way by weakly-ordered stores. Examples are:

* library functions, which use weakly-ordered memory to write results
e compiler-generated code, which also benefits from writing weakly-ordered results
* hand-crafted code

The degree to which a consumer of data knows that the data is weakly-ordered can
vary for these cases. As aresult, the sf ence instruction should be used to ensure
ordering between routines that produce weakly-ordered data and routines that consume
thisdata. The sf ence instruction provides a performance-efficient way by ensuring the
ordering when every st or e instruction that precedesthe st ore fence instructionin
program order is globally visible before any st or e instruction which follows the
fence.

6-13

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

The |l f ence Instruction

Thel fence (I oad fence) instruction makesit possible for every | oad instruction that
precedesthel f ence instruction in program order to be globally visible before any

| oad instruction that followsthel f ence. Thel f ence instruction provides a means of
segregating certain load instructions from other loads.

The nf ence Instruction

Thenf ence (mermory fence) instruction makes it possible for every | oad and st ore
instruction that precedes the nf ence instruction in program order to be globally visible
before any other | oad or st or e instruction that follows the nf ence. The nf ence
instruction provides a means of segregating certain memory instructions from other
memory references.

Note that the use of al f ence and sfence isnot equivalent to the use of anf ence
since the load and store fences are not ordered with respect to each other. In other
words, the load fence can be executed before prior stores, and the store fence can be
executed before prior loads. The nf ence instruction should be used whenever the
cache line flush instruction (c! f 1 ush) is used to ensure that speculative memory
references generated by the processor do not interfere with the flush; see “The clflush
Instruction” for more information.

The cl fl ush Instruction

The cache line associated with the linear address specified by the value of byte address
isinvalidated from all levels of the processor cache hierarchy (data and instruction).
Theinvalidation is broadcast throughout the coherence domain. If, a any level of the
cache hierarchy, the line is inconsistent with memory (dirty) it iswritten to memory
before invalidation. Other characteristics include:

* Thedatasize affected is the cache coherency size, which is 64 bytes on Pentium 4
processor.

* The memory attribute of the page containing the affected line has no effect on the
behavior of thisinstruction.

* Thecl flush instruction can be used at al privilege levels and is subject to all
permission checking and faults associated with a byte load.

6-14

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

cl fI ush isan unordered operation with respect to other memory traffic including
other cl f I ush instructions. Software should use anf ence, memory fence for cases
where ordering is a concern.

As an example, consider avideo usage model, wherein avideo capture deviceisusing
non-coherent AGP accesses to write a capture stream directly to system memory. Since
these non-coherent writes are not broadcast on the processor bus, they will not flush
any copies of the same locations that reside in the processor caches. As aresult, before
the processor re-reads the capture buffer, it should usecl f | ush to ensurethat any stale
copies of the capture buffer are flushed from the processor caches. Due to speculative
reads that may be generated by the processor, it isimportant to observe appropriate
fencing, using nf ence. Example 6-1 illustrates the pseudo-code for the recommended
usage of cf | ush:

Example 6-1 Pseudo-code for Using cflush

while (!buffer_ready} {}

nf ence
for(i=0;i<numcachelines;i+=cacheline_size) {
clflush (char *)((unsigned int)buffer + i)

}

nf ence
prefnta buffer[0];
VAR = buffer[0];

6-15

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Memory Optimization Using Prefetch

The Pentium 4 processor has two mechanisms for data prefetch: software-controlled
prefetch and an automatic hardware prefetch.

Software-controlled Prefetch

The software-controlled prefetch is enabled using the four prefetch instructions
introduced with Streaming SIMD Extensions instructions. These instructions are hints
to bring acacheline of datain to various levels and modes in the cache hierarchy. The
software-controlled prefetch is not intended for prefetching code. Using it can incur
significant penalties on a multiprocessor system when code is shared.

Software prefetching has the following characteristics:
* Canhandleirregular access patterns, which do not trigger the hardware prefetcher.
® Can use less bus bandwidth than hardware prefetching; see below.

* Software prefetches must be added to new code, and do not benefit existing
applications.

Hardware Prefetch

The automatic hardware prefetch, can bring linesinto the unified first-level cache
based on prior data misses. The automatic hardware prefetcher will attempt to prefetch
two cache lines ahead of the prefetch stream. This feature isintroduced with the
Pentium 4 processor.

There are different strengths and weaknesses to software and hardware prefetching of
the Pentium 4 processor. The characteristics of the hardware prefetching are asfollows
(compare with the software prefetching features listed above):

* Works with existing applications.
* Requires regular access patterns.

e Start-up penalty before hardware prefetcher triggers and extra fetches after array
finishes. For short arrays this overhead can reduce effectiveness of the hardware
prefetcher.

6-16

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

— The hardware prefetcher requires a couple misses before it starts operating.

— Hardware prefetching will generate arequest for data beyond the end of an
array, which will not be utilized. This behavior wastes bus bandwidth. In
addition this behavior resultsin a start-up penalty when fetching the beginning
of the next array; this occurs because the wasted prefetch should have been
used instead to hide the latency for theinitial datain the next array. Software
prefetching can recognize and handle these cases.

e Will not prefetch across a4k page boundary i.e. the program would haveto initiate
demand loads for the new page before the hardware prefetcher will start
prefetching from the new page.

Example of Latency Hiding with S/W Prefetch Instruction

Achieving the highest level of memory optimization using prefetch instructions
requires an understanding of the micro-architecture and system architecture of a given
machine. This section translates the key architectural implications into several simple
guidelines for programmers to use.

Figure 6-1 and Figure 6-2 show two scenarios of asimplified 3D geometry pipeline as
an example. A 3D-geometry pipeline typically fetches one vertex record at atime and
then performs transformation and lighting functions on it. Both figures show two
separate pipelines, an execution pipeline, and a memory pipeline (front-side bus).

Since the Pentium 4 processor, similarly to the Pentium Il and Pentium 111 processors,
completely decouples the functionality of execution and memory access, these two
pipelines can function concurrently. Figure 6-1 shows “bubbles’ in both the execution
and memory pipelines. When loads are issued for accessing vertex data, the execution
unitssitidleand wait until dataisreturned. On the other hand, the memory bus sitsidle
while the execution units are processing vertices. This scenario severely decreases the
advantage of having a decoupled architecture.

6-17

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-1 Memory Access Latency and Execution Without Prefetch

» Time

Execution - Execution units idle - Execution units idle

pipeline . '
'Issue loads ' Issue loads
i (vertex data) :
_ Bidle ¥
Front-Side [
Bus - > - >
Vertex n Vertex n+1
Figure 6-2 Memory Access Latency and Execution With Prefetch
» Time
OO Vorexn2 Vertexnd CVetexm
pipeline « issue prefetch \prefetch ' prefetch
‘.‘for vertex n '.‘ Vel \ V2
ront-Side ¥ Mem latency for V,,
Bus

Mem latency for Vi1
\ Mem latency for Vp.»

The performance loss caused by poor utilization of resources can be completely
eliminated by correctly scheduling the prefetch instructions appropriately. Asshownin
Figure 6-2, prefetch instructions are issued two vertex iterations ahead. This assumes
that only one vertex gets processed in oneiteration and a new data cache lineis needed
for each iteration. As aresult, when iteration n, vertex V,, is being processed, the
requested datais already brought into cache. In the meantime, the front-side busis
transferring the data needed for iteration n+1, vertex V... Because thereis no
dependence between V ;1 data and the execution of V,,, the latency for data access of

intel ® 6-18

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

V +1 can be entirely hidden behind the execution of V,,. Under such circumstances, no
“bubbles’ are present in the pipelines and thus the best possible performance can be
achieved.

Prefetching is useful for inner loops that have heavy computations, or are close to the
boundary between being compute-bound and memory-bandwidth-bound.

The prefetch is probably not very useful for loops which are predominately memory
bandwidth-bound.

When datais aready located in the first level cache, prefetching can be useless and
could even slow down the performance because the extra pops either back up waiting
for outstanding memory accesses or may be dropped altogether. This behavior is
platform-specific and may change in the future.

Prefetching Usage Checklist

The following checklist coversissues that need to be addressed and/or resolved to use
the prefetch instruction properly:

* Determine prefetch scheduling distance

* Use prefetch concatenation

* Minimize the number of prefetches

* Mix prefetch with computation instructions

® Use cache blocking techniques (for example, strip mining)
* Baance single-pass versus multi-pass execution

* Resolve memory bank conflict issues

* Resolve cache management issues

The subsequent sections discuss al the above items.

Prefetch Scheduling Distance

Determining the ideal prefetch placement in the code depends on many architectural
parameters, including the amount of memory to be prefetched, cache lookup latency,
system memory latency, and estimate of computation cycle. The ideal distance for
prefetching datais processor- and platform- dependent. If the distance is too short, the

6-19

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

prefetch will not hide any portion of the latency of the fetch behind computation. If the
prefetch istoo far ahead, the prefetched data may be flushed out of the cache by the
timeit isactually required.

Since prefetch distance is not awell-defined metric, for this discussion, we define a
new term, prefetch scheduling distance (PSD), which is represented by the number of
iterations. For large loops, prefetch scheduling distance can be set to 1, that is,
schedul e prefetch instructions one iteration ahead. For small loop bodies, that is, loop
iterations with little computation, the prefetch scheduling distance must be more than
one iteration.

A simplified equation to compute PSD is deduced from the mathematical model. For a
simplified equation, complete mathematical model, and methodol ogy of prefetch
distance determination, refer to Appendix E, “Mathematics of Prefetch Scheduling
Distance’.

Example 6-2 illustrates the use of a prefetch within the loop body. The prefetch
scheduling distanceis set to 3, esi iseffectively the pointer to aline, edx isthe address
of the data being referenced and xmi - xmm# are the data used in computation.
Example 6-2 uses two independent cache lines of data per iteration. The PSD would
need to be increased/decreased if more/less than two cache lines are used per iteration.

Example 6-2 Prefetch Scheduling Distance

top_| oop:
prefetchnta [edx + esi + 128*3]
prefetchnta [edx*4 + esi + 128*3]

novaps xnmil, [edx + esi]

novaps xmR, [edx*4 + esi]
novaps XxmB, [edx + esi + 16]
novaps xnmmd, [edx*4 + esi + 16]

add esi, 128

cnp esi, ecx
il top_l oop

intel ® 6-20

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Prefetch Concatenation

Maximum performance can be achieved when execution pipeline is at maximum
throughput, without incurring any memory latency penalties. This can be achieved by
prefetching data to be used in successive iterations in aloop. De-pipelining memory
generates bubbles in the execution pipeline. To explain this performance issue, a 3D
geometry pipeline that processes 3D verticesin strip format is used as an example. A
strip contains a list of vertices whose predefined vertex order forms contiguous
triangles. It can be easily observed that the memory pipe is de-pipelined on the strip
boundary due to ineffective prefetch arrangement. The execution pipelineis stalled for
the first two iterations for each strip. As aresult, the average latency for completing an
iteration will be 165(FI1X) clocks. (See Appendix E, “Mathematics of Prefetch
Scheduling Distance”, for a detailed memory pipeline description.)

This memory de-pipelining creates inefficiency in both the memory pipeline and
execution pipeline. This de-pipelining effect can be removed by applying a technique
called prefetch concatenation. With this technique, the memory access and execution
can be fully pipelined and fully utilized.

For nested loops, memory de-pipelining could occur during the interval between the
last iteration of an inner loop and the next iteration of its associated outer loop.
Without paying special attention to prefetch insertion, the loads from the first iteration
of an inner loop can miss the cache and stall the execution pipeline waiting for data
returned, thus degrading the performance.

In the code of Example 6-3, the cacheline containinga[ii][0] isnot prefetched at al
and always misses the cache. This assumesthat no array a[][] footprint residesin the
cache. The penalty of memory de-pipelining stalls can be amortized across the inner
loop iterations. However, it may become very harmful when the inner loop is short. In
addition, the last prefetch in the last PSD iterations are wasted and consume machine
resources. Prefetch concatenation is introduced here in order to eliminate the
performance issue of memory de-pipelining.

6-21

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Example 6-3 Using Prefetch Concatenation

for (ii =0; ii < 100; ii++) {
for (jj =0; jj <32, jj+=8) {

prefetch a[ii][]] +8]

conputation al[ii][jj]

}

Prefetch concatenation can bridge the execution pipeline bubbles between the
boundary of an inner loop and its associated outer loop. Simply by unrolling the last
iteration out of the inner loop and specifying the effective prefetch address for data
used in the following iteration, the performance loss of memory de-pipelining can be
completely removed. Example 6-4 gives the rewritten code.

Example 6-4 Concatenation and Unrolling the Last Iteration of Inner Loop

for (ii =0; ii < 100; ii++) {
for (jj =0; jj <24; jj+=8) { /* N1 iterations */
prefetch a[ii][]]+8]
conputation afii][jj]
}
prefetch a[ii+1][0]
computation af[ii][jj]/* Last iteration */

}

This code segment for data prefetching isimproved and only the first iteration of the
outer loop suffers any memory access latency penalty, assuming the computation time
islarger than the memory latency. Inserting a prefetch of the first data el ement needed
prior to entering the nested loop computation would eliminate or reduce the start-up
penalty for the very first iteration of the outer loop. This uncomplicated high-level
code optimization can improve memory performance significantly.

intel ® 6-22

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Minimize Number of Prefetches

Prefetch instructions are not completely free in terms of bus cycles, machine cycles
and resources, even though they require minimal clocks and memory bandwidth.

Excessive prefetching may lead to performance penalties because issue pendtiesin the
front-end of the machine and/or resource contention in the memory sub-system. This
effect may be severe in cases where the target loops are small and/or cases where the
target loop is issue-bound.

One approach to solve the excessive prefetching issue is to unroll and/or
software-pipeline the loops to reduce the number of prefetches required. Figure 6-3
presents a code exampl e which implements prefetch and unrolls the loop to remove the
redundant prefetch instructions whose prefetch addresses hit the previously issued
prefetch instructions. In this particular example, unrolling the original loop once saves
six prefetch instructions and nine instructions for conditional jumpsin every other
iteration.

Figure 6-3 Prefetch and Loop Unrolling

top_l oop: top_l oop:
prefetchnta [edx+esi +32] prefetchnta [edx+esi +128]
prefetchnta [edx*4+esi +32] prefetchnta [edx*4+esi +128]

movaps xmml, [edx+esi] movaps xmml, [edx+esi]
movaps xmm2, [edx*4+esi] movaps xmm2, [edx*4+esi]
add esi, 16 movaps xmml, [edx+esi +16]
cnmp esi, ecx movaps xm2, [edx*4+esi +1B]
j1 top_loop

movaps xmml, [edx+eSF+96]
movaps xm2, [edx®4+esi +96]

add esi, 128
cmp esi, ecx
j1 top_loop

6-23

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-4 demonstrates the effectiveness of software prefetchesin latency hiding. The
X axisindicates the number of computation clocks per loop (each iteration is
independent). The Y axis indicates the execution time measured in clocks per loop.
The secondary Y axis indicates the percentage of bus bandwidth utilization. The tests
vary by the following parameters:

1. Thenumber of load/store streams. Each |load and store stream accesses one
128-byte cache line each, per iteration.

2. Theamount of computation per loop. Thisis varied by increasing the number of
dependent arithmetic operations executed.

3. Thenumber of the software prefetches per loop. (for example, one every 16 bytes,
32 bytes, 64 bytes, 128 bytes).

As expected, the leftmost portion of each of the graphsin shows that when thereis not
enough computation to overlap the latency of memory access, prefetch does not help
and that the execution is essentially memory- bound. The graphs aso illustrate that
redundant prefetches do not increase performance.

6-24

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-4 Memory Access Latency and Execution With Prefetch

One load and one store stream

350 | 100.00%
RN
~ .| —e—16_por =32 _por 64_por 128_por —x—None_por
-+ 90.00%
]
300 -
AN
. / -+ 80.00%
AN
250 + 70.00%
) 1 60.00% §
T 200 B
i N
5 150.00% 35
.]
)
2 150 8
] 1 40.00% S
= 8
w
100 -+ 30.00%
~-m
- -+ 20.00%
% Bus Utilization
50
-+ 10.00%
0 - - - - - . 0.00%
48 108 144 192 240 336 408
Computations per loop
2 Load streams, 1 store stream
o
350 < 100.00%
~ ~ —-—16 =32 64 128 —x—none
N ~ / -+ 90.00%
300
N ~ -+ 80.00%
~
. -+ 70.00%
250
~
> ~
g S % Bus Utilization + 60.00% o
g8 I
: .
Ll
/ 50.00%
§ 200 <~ 0 3
o -~ o
= ~ 5
8 s +40.00% ¢
fin] S
150
~. N 1 30.00%
W — -
T 20.00%
100
———
e —+ 10.00%
50 - - - - - - 0.00%
54 108 144 192 240 336 390

Computations per loop

In ® 6-25

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Mix Prefetch with Computation Instructions

It may seem convenient to cluster al of the prefetch instructions at the beginning of a
loop body or before aloop, but this can lead to severe performance degradation. In
order to achieve best possible performance, prefetch instructions must be interspersed
with other computational instructions in the instruction sequence rather than clustered
together. If possible, they should also be placed apart from loads. Thisimproves the
instruction level parallelism and reduces the potentia instruction resource stalls. In
addition, this mixing reduces the pressure on the memory access resources and in turn
reduces the possibility of the prefetch retiring without fetching data.

Example 6-5illustrates distributing prefetch instructions. A simple and useful heuristic
of prefetch spreading for a Pentium 4 processor isto insert a prefetch instruction every
20to 25 clocks. Rearranging prefetch instructions could yield a noticeable speedup for
the code which stresses the cache resource.

6-26

Intel Pentium 4 Processor Optimization

Optimizing Cache Usage for Intel Pentium 4 Processors 6

Example 6-5

Spread Prefetch Instructions

top_| oop:
prefetchnta [ebx+128]
prefetchnta [ebx+1128]
prefetchnta [ebx+2128]
prefetchnta [ebx+3128]

prefetchnta [ebx+17128]
prefetchnta [ebx+18128]
prefetchnta [ebx+19128]
pref et chnt a [ebx+20128]
novps xnmi, [ebx]

addps xmm2, [ebx+3000]
mul ps xnm3, [ebx+4000]
addps xnmd, [ebx+1000]
addps xmm®, [ebx+3016]
mul ps xnmi, [ebx+2000]
mul ps xnmi, xrm2

add ebx, 128
cnp ebx, ecx
j1 top_loop

'S, t~

top_| oop:
prefet chnta [ebx+128]
novps xnmd, [ebx]
addps xmm2, [ebx+3000]

el . mil ps xnm8, [ebx+4000]

Sl prefetchnta [ebx+1128]
.. T~ a addps xnmi, [ebx+1000]

N, addps xnm2, [ebx+3016]
'~ pref et chnta [ebx+2128]
AN mil ps xnmd, [ebx+2000]

éé, *mulps xmmd, xnm?2

Q pref et chnta [ebx+3128]

.\'\. \\. \’*. Co
N prefetchnta [ebx+20128]

\, t._ add ebx, 128
‘.\ 3\ cnp ebx, ecx
\, j1 top_l oop

\~\'

N

A

NOTE. To avoid instruction execution stalls due to the
over-utilization of the resource, prefetch instructions must be
inter spersed with computational instructions.

6-27

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Prefetch and Cache Blocking Techniques

Cache blocking techniques, such as strip-mining, are used to improve temporal
locality, and thereby cache hit rate. Strip-mining isaone-dimensional temporal locality
optimization for memory. When two-dimensional arrays are used in programs, loop
blocking technique (similar to strip-mining but in two dimensions) can be applied for a
better memory performance.

If an application uses alarge data set that can be reused across multiple passes of a
loop, it will benefit from strip mining: data sets larger than the cache will be processed
in groups small enough to fit into cache. This allows temporal datato reside in the
cache longer, reducing bus traffic.

Data set size and temporal locality (data characteristics) fundamentally affect how
prefetch instructions are applied to strip-mined code. Figure 6-5 shows two simplified
scenarios for temporally-adjacent data and temporal ly-non-adjacent data.

6-28

Intel Pentium 4 Processor Optimization

Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-5 Cache Blocking — Temporally Adjacent and Non-adjacent Passes

Dataset A

e
L X

Dataset A

M

Dataset B

I
:

Dataset B

v

Temporally

adj acent passes

Dataset A

Dataset B

d

Dataset A

Dataset B

v

Temporally
non-adjacent

passes

Pass1

Pass 2

Pass 3

Pass 4

In the temporally-adjacent scenario, subsequent passes use the same data and find it
already in second-level cache. Prefetch issues aside, thisis the preferred situation. In
the temporally non-adjacent scenario, data used in pass mis displaced by pass (n+1),
requiring data re-fetch into the first level cache and perhaps the second level cacheif a
later pass reuses the data. If both data sets fit into the second-level cache, load

operations in passes 3 and 4 become less expensive.

6-29

Intel Pentium 4 Processor Optimization

Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-6 Examples of Prefetch and Strip-mining for Temporally Adjacent and Non-Adjacent

Passes Loops

Figure 6-6 shows how prefetch instructions and strip-mining can be applied to increase
performance in both of these scenarios.

Prefetchnta
Dataset A

SM

1
Reuse
Dataset A
:| J
—Y
Prefetchnta
Dataset B

e

~

Temporally
adjacent passes

N)

PrefetchtO
Dataset A

PrefetchtO
Dataset B
SM?2
Reuse
Dataset A
Reuse
Dataset B

\J

Temporally

non-adjacent
passes

For Pentium 4 processors, the left scenario shows a graphical implementation of using
pr ef et chnt a to prefetch datainto selected ways of the second-level cache only (SM1
denotes strip mine one way of second-level), minimizing second-level cache pollution.
Use pr ef et chnt a if the datais only touched once during the entire execution passin

6-30

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

order to minimize cache pollution in the higher level caches. This provides instant
availability, assuming the prefetch was issued far ahead enough, when the read access
isissued.

In scenario to the right, in Figure 6-6, keeping the datain one way of the second-level
cache does not improve cache locality. Therefore, usepr ef et cht 0 to prefetch the data.
This hides the latency of the memory referencesin passes 1 and 2, and keeps a copy of
the datain second-level cache, which reduces memory traffic and latencies for passes 3
and 4. To further reduce the latency, it might be worth considering extrapr ef et chnt a
instructions prior to the memory references in passes 3 and 4.

In Example 6-6, consider the data access patterns of a 3D geometry engine first
without strip-mining and then incorporating strip-mining. Note that 4-wide SIMD
instructions of Pentium Il processor can process 4 vertices per every iteration.

Example 6-6 Data Access of a 3D Geometry Engine without Strip-mining

while (nvtx < MAX_NUM VTX) {
prefetchnta vertex; data /'l v =[X,y,z,nx,ny,nz,tu,tv]
prefetchnta vertex;,; data
prefetchnta vertex;,, data
prefetchnta vertex;,3 data

TRANSFORMATI ON code /'l use only x,y,z,tu,tv of a vertex
nvt x+=4

}

while (nvtx < MAX_NUM VTX) {
prefetchnta vertex; data Il v =[X,y,z,nx,ny,nz, tu,tv]

/'l x,y,z fetched again

prefetchnta vertex;,; data
prefetchnta vertex;,, data
prefetchnta vertex;,3; data
conpute the light vectors /1 use only Xx,y,z
LOCAL LI GHTI NG code /1 use only nx,ny, nz
nvt x+=4

}

"Ttelo 6-31

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Without strip-mining, al the x,y,z coordinates for the four vertices must be re-fetched
from memory in the second pass, that is, the lighting loop. This causes
under-utilization of cache lines fetched during transformation loop as well as
bandwidth wasted in the lighting loop.

Now consider the code in Example 6-7 where strip-mining has been incorporated into
the loops.

Example 6-7 Data Access of a 3D Geometry Engine with Strip-mining

while (nstrip < NUM STRIP) {
/* Strip-mine the loop to fit data into one way of the second-Ievel

cache */
while (nvtx < MAX_NUM VTX PER STRIP) {
prefetchnta vertex; data /'l v=[X,¥y,z,nx,ny,nz, tu,tv]

prefetchnta vertex;,; data
prefetchnta vertex;,, data
prefetchnta vertex;,; data
TRANSFORVATI ON code
nvt x+=4
}
while (nvtx < MAX_NUM VTX_PER STRIP) {

/* xy z coordinates are in the second-level cache, no prefetch is
required */

compute the light vectors
PO NT LI GHTI NG code
nvt x+=4

With strip-mining, all the vertex data can be kept in the cache (for example, one way of
second-level cache) during the strip-mined transformation loop and reused in the
lighting loop. Keeping data in the cache reduces both bus traffic and the number of
prefetches used.

6-32

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-7 summarizes the steps of the basic usage model that incorporates prefetch
with strip-mining. The steps are:

* Do strip-mining: partition loops so that the dataset fits into second-level cache.
* Useprefetchnta if thedatais only used once or the dataset fits into 32K (one
way of second-level cache). Use pr ef et cht 0 if the dataset exceeds 32K.

The above steps are platform-specific and provide an implementation example. The
variables NUM_STRI P and MAX_NUM VX_PER_STRI P can be heuristically determined for
peak performance for specific application on a specific platform.

Figure 6-7 Incorporating Prefetch into Strip-mining Code

UseOnce |UseMultiple
Times

Adjacent Non-Adjacent Passes
Passes

Prefetchnta |PrefetchO, SM1 | PrefetchO, SM1
(2nd Level Pollution)

Single-pass versus Multi-pass Execution

An algorithm can use single- or multi-pass execution defined as follows:
* Single-pass, or unlayered execution passes a single data element through an entire
computation pipeline.

* Multi-pass, or layered execution performs a single stage of the pipeline on a batch
of data elements, before passing the batch on to the next stage.

A characteristic feature of both single-pass and multi-pass execution is that a specific
trade-off exists depending on an algorithm’s implementation and use of a single-pass
or multiple-pass execution, see Figure 6-8.

6-33

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Multi-pass execution is often easier to use when implementing a general purpose API,
where the choice of code paths that can be taken depends on the specific combination
of features selected by the application (for example, for 3D graphics, this might
include the type of vertex primitives used and the number and type of light sources).

With such a broad range of permutations possible, a single-pass approach would be
complicated, in terms of code size and validation. In such cases, each possible
permutation would require a separate code sequence. For example, an object with
features A, B, C, D can have a subset of features enabled, say, A, B, D. This stage
would use one code path; another combination of enabled features would have a
different code path. It makes more sense to perform each pipeline stage as a separate
pass, with conditional clauses to select different features that are implemented within
each stage. By using strip-mining, the number of vertices processed by each stage (for
example, the batch size) can be selected to ensure that the batch stays within the
processor caches through all passes. An intermediate cached buffer is used to pass the
batch of vertices from one stage or pass to the next one.

Single-pass execution can be better suited to applications which limit the number of
features that may be used at a given time. A single-pass approach can reduce the
amount of data copying that can occur with a multi-pass engine, see Figure 6-8.

6-34

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Figure 6-8 Single-Pass Vs. Multi-Pass 3D Geometry Engines

strip list
80vis
60invis
40 vis
Culling Culling
) | —
= /]
Transform Outer loopis | L— ——
Vertex . processing —
processing strips - -
(inner loop) Lighting
Lighting
Single-Pass Multi-Pass

The choice of single-pass or multi-pass can have a number of performance
implications. For instance, in a multi-pass pipeline, stages that are limited by
bandwidth (either input or output) will reflect more of this performance limitation in
overall execution time. In contrast, for a single-pass approach, bandwidth-limitations

I ntel ® 6-35

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

can be distributed/amortized across other computation-intensive stages. Also, the
choice of which prefetch hints to use are aso impacted by whether a single-pass or
multi-pass approach is used (see “Prefetch and Cacheability Instructions”).

Memory Optimization using Non-Temporal Stores

The non-temporal stores can aso be used to manage data retention in the cache. Uses
for the non-temporal stores include:

* To combine many writes without disturbing the cache hierarchy
* To manage which data structures remain in the cache and which are transient.

Detailed implementations of these usage models are covered in the following sections.

Non-temporal Stores and Software Write-Combining

Use non-temporal storesin the cases when the datato be stored is:
* write-once (non-temporal)
* too large and thus cause cache thrashing.

Non-temporal stores do not invoke a cache line allocation, which means they are not
write-allocate. As aresult, caches are not polluted and no dirty writeback is generated
to compete with useful data bandwidth. Without using non-temporal stores, bus
bandwidth will suffer when caches start to be thrashed because of dirty writebacks.

In Streaming SIMD Extensions implementation, when non-temporal stores are written
into writeback or write-combining memory regions, these stores are weakly-ordered
and will be combined internally inside the processor’s write-combining buffer and be
written out to memory as a line burst transaction. To achieve the best possible
performance, it is recommended to align data along the cache line boundary and write
them consecutively in a cache line size while using non-temporal stores. If the
consecutive writes are prohibitive due to programming constraints, then software
write-combining (SWAC) buffers can be used to enable line burst transaction.

You can declare small swac buffers (acache line for each buffer) in your application to
enable explicit write-combining operations. Instead of writing to non-temporal
memory space immediately, the program writes data into SWaC buffers and combines
them inside these buffers. The program only writes a SwaC buffer out using

6-36

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

non-temporal stores when the buffer isfilled up, that is, acache line (128 bytes for the
Pentium 4 processor). Although the sSwAC method requires explicit instructions for
performing temporary writes and reads, this ensures that the transaction on the
front-side bus causes line transaction rather than several partial transactions.
Application performance gains considerably from implementing this technique. These
SWWC buffers can be maintained in the second-level and re-used throughout the
program.

Cache Management

The streaming instructions (pr ef et ch and st or es) can be used to manage data and
minimize disturbance of temporal data held within the processor’s caches.

In addition, the Pentium 4 processor takes advantage of the Intel C ++ Compiler that
supports C ++ language-level features for the Streaming SIMD Extensions. The
Streaming SIMD Extensions and MM X technology instructions provide intrinsics that
allow you to optimize cache utilization. The examples of such Intel compiler intrinsics
are_nm prefetch, _mm stream _nmm | oad, nm sfence. For more details on these
intrinsics, refer to the Intel C ++ Compiler User’s Guide, order number 718195.

The following examples of using prefetching instructions in the operation of video
encoder and decoder as well asin simple 8-byte memory copy, illustrate performance
gain from using the prefetching instructions for efficient cache management.

Video Encoder

In avideo encoder example, some of the data used during the encoding processis kept
in the processor’s second-level cache, to minimize the number of reference streams
that must be re-read from system memory. To ensure that other writes do not disturb
the data in the second-level cache, streaming stores (novnt q) are used to write around
all processor caches.

The prefetching cache management implemented for the video encoder reduces the
memory traffic. The second-level cache pollution reduction is ensured by preventing
single-use video frame data from entering the second-level cache. Using a
non-temporal prefetch (pr ef et chnt a) instruction brings datainto only one way of the
second-level cache, thus reducing pollution of the second-level cache. If the data
brought directly to second-level cache is not re-used, then there is a performance gain

6-37

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

from the non-temporal prefetch over atemporal prefetch. The encoder uses
non-temporal prefetches to avoid pollution of the second-level cache, increasing the
number of second-level cache hits and decreasing the number of polluting write-backs
to memory. The performance gain results from the more efficient use of the
second-level cache, not only from the prefetch itself.

Video Decoder

In the video decoder example, completed frame datais written to local memory of the
graphics card, which is mapped to wc (Write-combining) memory type. A copy of
reference data is stored to the WB memory at alater time by the processor in order to
generate future data. The assumption isthat the size of the reference dataistoo largeto
fit in the processor’s caches. A streaming store is used to write the data around the
cache, to avoid displaying other temporal data held in the caches. Later, the processor
re-reads the data using pr ef et chnt a, which ensures maximum bandwidth, yet
minimizes disturbance of other cached temporal data by using the non-temporal (NTA)
version of prefetch.

Conclusions from Video Encoder and Decoder Implementation

These two examples indicate that by using an appropriate combination of
non-temporal prefetches and non-temporal stores, an application can be designed to
lessen the overhead of memory transactions by preventing second-level cache
pollution, keeping useful datain the second-level cache and reducing costly write-back
transactions. Even if an application does not gain performance significantly from
having data ready from prefetches, it can improve from more efficient use of the
second-level cache and memory. Such design reduces the encoder’s demand for such
critical resource as the memory bus. This makes the system more balanced, resultingin
higher performance.

Using Prefetch and Streaming-store for a Simple Memory Copy

Consider amemory copy task to transfer alarge array of 8-byte data elements from
one memory location to another. Example 6-8 presents the basic algorithm of the
simple memory copy. This task can be sped up greatly using prefetch and streaming
store instructions. The techniques are discussed in the following paragraph and a code
exampleis shown in Example 6-9.

6-38

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Example 6-8 Basic Algorithm of a Simple Memory Copy

#define N 512000

double a[N], b[N;

for (i =0; i <N i+ {
b[i] = a[i];

The memory copy algorithm can be optimized using the Streaming SIMD Extensions
and these considerations:

e aignment of data

* proper layout of pagesin memory

* cachesize

* interaction of the transaction lookaside buffer (TLB) with memory accesses
e combining prefetch and streaming-store instructions.

The guidelines discussed in this chapter come into play in this simple example. TLB
priming is required for the Pentium 4 processor just asit isfor the Pentium 111
processor, since software prefetch instructions will not initiate page table walks on
either processor.

TLB Priming

The TLB isafast memory buffer that is used to improve performance of the translation
of avirtual memory address to a physical memory address by providing fast accessto
page table entries. If memory pages are accessed and the page table entry is not

resident inthe TLB, a TLB missresults and the page table must be read from memory.

The TLB missresultsin a performance degradation since another memory access must
be performed (assuming that the translation is not aready present in the processor
caches) to update the TLB. The TLB can be preloaded with the page table entry for the
next desired page by accessing (or touching) an addressin that page. Thisis similar to
prefetch, but instead of a data cache line the page table entry is being loaded in
advance of itsuse. This helps to ensure that the page table entry isresident inthe TLB
and that the prefetch happens as requested subsequently.

6-39

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Optimizing the 8-byte Memory Copy

Example 6-9 presents the copy agorithm that uses second level cache. The algorithm
performs the following steps:

1. usesblocking technique to transfer 8-byte data from memory into second-level
cache using the _mm pr ef et ch intrinsic, 128 bytes at atime to fill ablock. The
size of ablock should be less than one half of the size of the second-level cache,
but large enough to amortize the cost of the loop.

2. loadsthe datainto an xmmregister using the _mm | oad_ps intrinsic.

3. transfersthe 8-byte data to a different memory location viathe _nm st r eam
intrinsics, bypassing the cache. For thisoperation, it isimportant to ensure that the
page table entry prefetched for the memory is preloaded in the TLB.

Example 6-9 An Optimized 8-byte Memory Copy

#def i ne PAGESI ZE 4096;
#def i ne NUMPERPAGE 512 /'l # of elenents to fit a page

double a[N], b[N], tenp;
for (kk=0; kk<N;, kk+=NUMPERPAGE) {
tenp = a] kk+NUMPERPAGE] ; /1 TLB primng
/1 use block size = page size,
/'l prefetch entire bl ock, one cache line per |oop
for (j=kk+16; j<kk+NUMPERPAGE; j+=16) {
_mm prefetch((char*)&a[j], _MM H NT_NTA);
}
/1 copy 128 byte per |oop
for (j=kk; j<kk+NUMPERPAGE; j+=16) {
_mmstream ps((float*)&b[j],
_mm | oad_ps((float*)&a[j]));
_mm stream ps((float*)&b[j+2],
_mm | oad_ps((float*)&a[j+2]));

continued

6-40

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

Example 6-9 An Optimized 8-byte Memory Copy

_mmstream ps((fl oat*)&b[j +4],
_mm | oad_ps((float*)&a[j+4]));
_mmstream ps((fl oat*)&b[j +6],
_mm | oad_ps((float*)&a[j+6]));
_mmstream ps((fl oat*)&b[j +8],
_mm | oad_ps((float*)&a[j+8]));
_mm stream ps((fl oat*)&b[j +10],
_mm | oad_ps((float*)&a[j+10]));
_mmstream ps((fl oat*)&b[j +12],
_mm | oad_ps((float*)&a[j+12]));
_mmstream ps((fl oat*)&b[j +14],
_mm | oad_ps((float*)&a[j+14]));
} /1 finished copying one bl ock
} /1 finished copying N el ements
_mm sfence();

In Example 6-9, eight _nm | oad_ps and _nm st r eam ps intrinsics are used so that all
of the data prefetched (a 128-byte cache line) is written back. The prefetch and
streaming-stores are executed in separate |oops to minimize the number of transitions
between reading and writing data. This significantly improves the bandwidth of the
Memory acCesses.

Theinstruction, t emp = a[kk+CACHESI ZE] , is used to ensure the page table entry for
array, and a is entered in the TLB prior to prefetching. Thisis essentially a prefetch
itself, as a cache line isfilled from that memory location with this instruction. Hence,
the prefetching starts from kk+4 in this loop.

This example assumes that the destination of the copy is not temporally adjacent to the
code. If the copied datais destined to be reused in the near future, then the streaming
store instructions should be replaced with regular 128 bit stores(_nm st or e_ps) . This
is required because the implementation of streaming stores on Pentium 4 processor
writes data directly to memory, maintaining cache coherency.

intel. sa1

Intel Pentium 4 Processor Optimization Optimizing Cache Usage for Intel Pentium 4 Processors 6

i ntel ® 6-42

Application Performance

Tools A

Intel offersan array of application performance tools that are optimized to take the best
advantage of the Intel architecture (IA)-based processors. This appendix introduces
these tools and explains their capabilities which you can employ for developing the
most efficient programs, without having to write assembly code.

The following performance tools are available:
* Intel® C++ Compiler and Intel® Fortran Compiler

The compilers generate highly optimized floating-point code and provide unique
features such as profile-guided optimizations and high-level language support,
including vectorization, for MM XTM technol ogy, the Streaming SIMD Extensions
(SSE), and the Streaming SIMD Extensions 2 (SSE2).

* Enhanced Debugger

The Enhanced Debugger (EDB) enables you to debug C++, Fortran or mixed
language programs. It allows you to view the XMM registersin a variety of
formats corresponding to the data types supported by SSE and SSE2. These
registers can also be viewed using the debugger supplied with Microsoft* Visua
C++* version 6.0, service pack 4 or later.

* VTune™ Performance Analyzer

The VTune analyzer collects, analyzes, and provides Intel architecture-specific
software performance data from the system-wide view down to a specific module,
function, and instruction in your code.

* Intel® Performance Library Suite

The library suite consists of a set of software libraries optimized for Intel
architecture processors. The suite currently includes the following libraries:

A-1

Intel Pentium 4 Processor Optimization Application Performance Tools A

— Intel® Math Kernel Library (MKL)

— Intel® Signal Processing Library (SPL)

— Intel® Image processing Library (IPL)

— Intel® JPEG library (1JL)

— Intel® Integrated Performance Primitives (IPP)
— Intel® Speech Developer Toolkit (SDT)

— Intel® Recognition Primitives Library (RPL)

Intel Compilers

The Intel C++ compiler iscompatible with Microsoft* Visual C++* and plugsin to the
Microsoft Developer Studio IDE. The Intel Fortran Compiler can be run out of the
Microsoft Developer Studio IDE viathe Fortran Build Tool that plugsinto it. The
Fortran compiler offers substantial source compatibility with Compag* Visual Fortran.

Both compilers allow you to optimize your code by using special optimization options
described in this section. There are severa coding methods and optimizations,
described here and other sectionsin this manual, targeted specifically for enabling
software devel opers to optimize applications for the Pentium® 1l and Intel®

Pentium 4 processors. Vectorization, processor dispatch, inter-procedural optimization,
and profile-guided optimization are all supported by the Intel compilers and can
significantly aid the performance of an application.

The most general optimization options are - OL and - 2. Each of them enablesa
number of specific optimization options. In most cases, - &2 isrecommended over - O1
because the - @2 option enables inline expansion, which helps programs that have
many function calls. The - & option is on by default.

The -01 and -02 options enable specific options as follows:

- 0L Enablesoptions-y, -G -, -G, -Oy, -Obl, -&, -Gs,and
- §y. However, - 01 disables afew options that increase code size.
-2 Enablesoptions-oy, -G, -a, -Oy, -1, -&, -G, and

- §y. Confines optimizations to the procedural level.
The - ad option disables all optimizations.

A-2

Intel Pentium 4 Processor Optimization Application Performance Tools A

All the command-line options are described in the Intel® C++ Compiler User’s Guide
and Reference.

Code Optimization Options

This section describes the options used to optimize your code and improve the
performance of your application.

Targeting a Processor (- 1)

Use - Gn to target an application to run on a specific processor for maximum
performance. Any of the - Gn suboptions you choose results in your binary being
optimized for corresponding Intel architecture 32-bit processors. - Gs is the default,
and targets optimization for the Pentium Il and Pentium III processors. - G7 targets the
Intel Pentium 4 processor.

Automatic Processor Dispatch Support (- Q[ext ensi ons] and
- Qax[ext ensi ons])

The - Qx[ext ensi ons] and - Qax[ext ensi ons] oOptions provide support to generate
code that is specific to processor-instruction extensions.

- X[ext ensi ons] generates specialized code to run exclusively on the
processors indicated by the extension(s).
- Qax[ext ensi ons] generates code specialized to processors which support the

specified extensions, but also generates generic 1A-32 code.
The generic code usually executes slower than the
specialized version. A runtime check for the processor type
is made to determine which code executes.

You can specify the same extensions for either option as follows:
[Pentium 11 and Pentium 111 processors, which use the cvov and Fevov

instructions
M Pentium processor with MM X technology, Pentium 11, and
Pentium Il processors
K Streaming SIMD Extensions. Includesthei and Mextensions.
w Streaming SIMD Extensions 2. Includesthei, M and K extensions.
intel. A3

Intel Pentium 4 Processor Optimization Application Performance Tools A

A CAUTION. When you use - Qax[ext ensi ons] in conjunction with
- X[ext ensi ons] , the extensions specified by - Q<[ext ensi ons]

can be used unconditionally by the compiler, and the resulting
programwill require the processor extensions to execute properly.

Vectorizer Switch Options

The Intel C++ and Fortran Compiler can vectorize your code using the vectorizer
switch options. The options that enable the vectorizer arethe- x[M K, W and

- Qax[M K, W described above. The compiler provides a number of other vectorizer
switch options that alow you to control vectorization. All vectorization switches
requirethe- x[M K, W or - Qax[M K, W switch to be on. The default is off.

Inadditiontothe- x[M K, W or - Qax[M K, W switches, the compiler provides the
following vectorization control switch options:

-Quec_report[n] Controls the vectorizer’s diagnostic levels, where nis either
01,2 0r3.
-Qrestrict Enables pointer disambiguation with therest ri ct qualifier.

Prefetching

The compilers, withthe- x[M K, W and - Qax[M K, W switches on, insert prefetch
instructions, where appropriate, for the Pentium 111 and Pentium 4 processors.

Loop Unrolling

The compilers automatically unroll loops with the - x[M K, W and - Qax[M K, W
switches.

To disable loop unrolling, specify -Qunrol 1 0.

A-4

Intel Pentium 4 Processor Optimization Application Performance Tools A

Multithreading with OpenMP

Both the Intel C++ and Fortran Compilers support shared memory paralelism via
OpenM P compiler directives, library functions and environment variables. OpenM P
directives are activated by the compiler switch - Qopennp. The available directives are
described in the Compiler User’s Guides available with the Intel C++ and Fortran
Compilers, version 5.0 and higher. Further information about the OpenMP standard is
available at http://www.openmp.org.

Inline Expansion of Library Functions (-G ,-Q -)

The compiler inlines anumber of standard C, C++, and math library functions by
default. Thisusually resultsin faster execution of your program. Sometimes, however,
inline expansion of library functions can cause unexpected results. For explanation,
seethe Intel® C++ Compiler User’s Guide and Reference.

Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, -Qprec_div, -Qpc,
-Qlong_double)

These options provide optimizations with varying degrees of precision in
floating-point arithmetic.

Rounding Control Option (-Qrcd)

The compiler usesthe - @r cd option to improve the performance of code that requires
floating-point calculations. The optimization is obtained by controlling the change of
the rounding mode.

The - @ cd option disables the change to truncation of the rounding modein
floating-point-to-integer conversions.

For complete details on all of the code optimization options, refer to the Intel® C++
Compiler User’s Guide and Reference.

A-5

http://www.openmp.org

Intel Pentium 4 Processor Optimization Application Performance Tools A

Interprocedural and Profile-Guided Optimizations

The following are two methods to improve the performance of your code based on its
unique profile and procedural dependencies:

Interprocedural Optimization (IPO)

Usethe- Q p optionto analyze your code and apply optimizations between procedures
within each source file. Use multifile IPO with - QG po to enable the optimizations
between procedures in separate source files.

Profile-Guided Optimization (PGO)

Creates an instrumented program from your source code and special code from the
compiler. Each time this instrumented code is executed, the compiler generates a
dynamic information file. When you compile a second time, the dynamic information
files are merged into a summary file. Using the profile information in thisfile, the
compiler attempts to optimize the execution of the most heavily travelled pathsin the
program.

Profile-guided optimization is particularly beneficia for the Pentium 4 processor. It
greatly enhances the optimization decisions the compiler makes regarding instruction
cache utilization and memory paging. Also, because PGO uses execution-time
information to guide the optimizations, branch-prediction can be significantly
enhanced by reordering branches and basic blocks to keep the most commonly used
paths in the microarchitecture pipeline, as well as generating the appropriate
branch-hints for the processor.

When you use PGO, consider the following guidelines:

* Minimize the changes to your program after instrumented execution and before
feedback compilation. During feedback compilation, the compiler ignores
dynamic information for functions modified after that information was generated.

% NOTE. The compiler issues a warning that the dynamic information
e corresponds to a modified function.

A-6

Intel Pentium 4 Processor Optimization Application Performance Tools A

* Repeat the instrumentation compilation if you make many changes to your source
files after execution and before feedback compilation.

For complete details on the interprocedural and profile-guided optimizations, refer to
the Intel C++ Compiler User’s Guide With Support for the Sreaming SSMD
Extensions 2 (Doc. number 718195-2001).

VTune™ Performance Analyzer

V Tune Performance Analyzer is instrumental in helping you understand where to
begin tuning your application. VTune analyzer helps you identify and analyze
performance trends at all levels: the system, micro-architecture, and application.

The sections that follow discuss the major features of the V Tune analyzer that help you
improve performance and briefly explain how to use them. For more details on how to
sample events, run V Tune analyzer and see online help.

Using Sampling Analysis for Optimization

The sampling feature of the VTune analyzer provides analysis of the performance of
your applications using time- or event-based sampling and hotspot analysis. The time-
or event-based sampling analysis provides the capability to non-intrusively monitor all
active software on the system, including the application.

Each sampling session contains summary information about the session, such as the
number of samples collected at each privilege level and the type of interrupt used.
Each session is associated with a database. The session database allows you to
reproduce the results of a session any number of times without having to sample or
profile.

Time-based Sampling

Time-based sampling (TBS) allows you to monitor all active software on your system,
including the operating system, device drivers, and application software. TBS collects
information at aregular time interval. The VTune analyzer then processes this data to
provide adetailed view of the system’s activity.

A-7

Intel Pentium 4 Processor Optimization Application Performance Tools A

The time-based sampling periodically interrupts the processor at the specified
sampling interval and collects samples of the instruction addresses, matches these
addresses with an application or an operating system routine, and creates a database
with the resulting samples data. V Tune analyzer can then graphically display the
amount of CPU time spent in each active module, process, and processor (on a
multiprocessor system). The TBS—

¢ samplesand display a system-wide view of the CPU time distribution of all the
software activity during the sampling session

* determines which sections in your code are taking the most CPU time

¢ analyzes hotspots, displays the source code, and determines performance issues at
the source and assembly code levels.

Figure A-1 provides an example of a hotspots report by location.

Figure A-1 Sampling Analysis of Hotspots by Location

L

UEgags [pectent]

il -

A-8

Intel Pentium 4 Processor Optimization Application Performance Tools A

Event-based Sampling

You can use event-based sampling (EBS) to monitor all active software on your
system, including the operating system, device drivers, and application software based
on the occurrence of processor events.

The VTune analyzer can collect, analyze, and display the performance event counters
data of your code provided by the Pentium 4, Pentium Il and Pentium Il processors.
These processors can generate numerous events per clock cycle. The VTune analyzer
typically supports programming the events using one of the performance counter.

For event-based sampling, you can select one or more events, in each event group.
However, the VTune analyzer runs a separate session to monitor each event you have
selected. It interrupts the processor after a specified number of events and collects a
sample containing the current instruction address. The frequency at which the samples
are collected is determined by how often the event is caused by the software running in
the system during the sampling session.

The data collected alows you to determine the number of events that occurred and the
impact they had on performance. Sampling results are displayed in the Modul es report
and Hotspots report. Event datais aso available as a performance counter in the
Chronol ogies window. The event sampled per session is listed under the Chronologies
entry in the Navigation tree of the VTune analyzer.

Sampling Performance Counter Events

Event-based sampling can be used together with the hardware performance counters
availablein the Intel architecture to provide detailed information on the behavior of
specific events in the microprocessor. Some of the microprocessor events that can be
sampled include instruction retired, branches retired, mispredicted branches retired,
trace cache misses.

V Tune analyzer provides access to the processor’s performance counters. These
counters are described in the V Tune analysers on-line help documentation, Sampling
section. The processors' performance counters can be configured to monitor any of

A-9

Intel Pentium 4 Processor Optimization Application Performance Tools A

several different types of events. All the events are listed in the Configure
menu/Options command/Processor Events for EBS page of the VTune analyzer, see

Figure A-2.

Figure A-2 Processor Events List

~10] x|

Processor Events for EBS

— Select Event Group for Event-B azed Sampling

I.-'f-.ll Events j

Event Hame -
Clockhcks

Inztructions Retired

lops Retired

Branches Retired

Mizpredicted Branches Hetired
Trace Cache Deliver Mode
Trace Cache Mizzes

1st-Level Cache Miszez Retired
2nd-Level Cache Mizzes Retired
DTLE Mizzez Retired

ITLE Mizzes =
[TP | PR " S [y R | ﬂ—I

Reset | |Check &l

lDoooOoooooo

&

Cloze | Help

intel ® A-10

Intel Pentium 4 Processor Optimization

Application Performance Tools A

At first glance, it is difficult to know which events are relevant for understanding the
performance effects. For example, to better understand performance effects on
branching and trace cache behavior with the Pentium 4 processor, the VTune analyzer
can program various counters to collect the performance data through a variety of
pre-defined performance monitoring events. The events that relate to the activity of the
Execution Trace cache, as well as the branching include:

Branches retired—this event indicates the number of branch instructions
executed to completion.

Mispredicted branchesretired—this event indicates the number of mispredicted
branch instructions executed to completion.

Trace cache deliver mode—this event indicates the number of cyclesthat the
trace cache is delivering pops from the trace cache, Vs. decoding and building
traces.

Trace cache misses—this event indicates the number of times that significant
delays occurred in order to decode instructions and build atrace because of atrace
cache miss.

A complete listing of pre-defined performance monitoring events (also referred to as
performance metrics) for the Pentium 4 processor is presented in Appendix B, “Intel
Pentium 4 Processor Performance Metrics.” The Pentium 4 processor performance
metrics are derived from a set of programmable performance monitoring events. For a
list of the programmable performance monitoring events specific to the Pentium 4
processor, refer to Appendix A in the IA-32 Intel® Architecture Software Developer’s
Manual, Volume 3: System Programming.

Other performance metrics of interest are:

Instructions retired—this event indicates the number of instructions that
executed to completion. This does not include partially processed instructions
executed due to branch mispredictions.

x87 retired—this event indicates the number of x87 floating-point instructions
that executed to completion.

Clockticks—this event initiates time-based sampling by setting the counters to
count the processor's clock ticks.

A-11

Intel Pentium 4 Processor Optimization Application Performance Tools A

* x87 Input/Output Assists—this event indicates the number of occurrence of x87
input/output operands needing assistance to handle an exception condition.

The raw data collected by the VTune analyzer can be used to compute various
indicators. For example, ratios of the clockticks, instructions retired, and x87 assists
can give you a good indication that the floating-point computation code in the
application may be stalled and is suited for re-coding.

Call Graph Profiling

The call graph profiles your application and displays a call graph of active functions.
The call graph analyzes the data and displays a graphical view of the threads created
during the execution of the application, a complete list of the functions called, and the
relationship between the parent and child functions. Use V Tune analyzer to profile
your Win32* executable files or Java* applications and generate acall graph of active
functions.

Call graph profiling includes collecting and analyzing call-site information and
displaying the resultsin the Call List of the Call Graph and Source views. The call
graph profiling provides information on how many times a function (caller) called
some other function (callee) and the amount of time each call took. In many cases the
caller may call the callee from several places (sites), so call graph also provides call
information per site. (Call site information is not collected for Java call graphs.)

The View by Call Sites displays the information about callers and callees of the
function in question (also referred to as current function) by call sites. This view
allows you to locate the most expensive calls.

Call Graph Window

The call graph window comprises three views: Spreadsheet, Call Graph, and Call List,
see Figure A-3. The Call Graph view, displayed on the lower section of the window,
corresponds to the function (method) selected in the Spreadsheet. It displays the
function, the function’s parents, and function’s child functions.

A-12

Intel Pentium 4 Processor Optimization Application Performance Tools A

Figure A-3 Call Graph Window

configure Window Help

aph Profiing 7| }l -l EI%"}ElﬁSal LI ﬂl E{l}%l I%I%
| Thread_te =

1|2 | Module |Class | Function | Tcﬂ
Total Process
TEl Process Total Threads
Thread_{&
Total GDI32.0LL
TEl GhNE2.0LL Total
D52 DLL BitBl
GhIs2 DLL CresteBitmagp
GhIs2 DLL CreateCompatibleBitmagp -
| LIJ

2=l Eelsle])

RegistervaitForinputidle |

GoiDllinitialize

DizakbleThreadLibrary Calls

Al | LILI

Call List Call Graph for Thread_f6 |

"Ttel ® A-13

Intel Pentium 4 Processor Optimization Application Performance Tools A

Each node (box) in the call graph represents a function. Each edge (line with an arrow)
connecting two nodes represents the call from the parent (caller) to the child function
(callee). The number next to the edge (line) indicates the number of callsto that
function.

The window has a Call List tab in the bottom of the Call Graph view. The Call List
view lists all the callers and the callees of the function selected in the spreadsheet and
displayed in the Call Graph view. In addition, the Call List has aView by Call Sitesin
which you can see call information represented by call sites.

Static Code Analysis

This feature analyzes performance through

* performing static code analysis of the functions or blocks of code in your
application without executing your application

* getting alist of functions with their respective addresses for quick access to your
code

* getting summary information about the percentage of pairing and penalties
incurred by the instructions in each function.

The static code analyzer provides analysis of the instructions in your application and
their relationship with each other, without executing or sampling them. It provides an
estimation of the performance of your application, not actual performance. The static
code analyzer analyzes the module you specified in the Executable field and displays
the results. By default, the static code analyzer analyzes only those functionsin the
modul e that have source code available.

During the static code analysis, the static code analyzer does the following tasks:

* searches your program for the debug symbols or prompts you to specify the
symbol files

* searchesthe source directories for the source files
* analyzes each basic block and function in your program
* creates adatabase with the results

A-14

Intel Pentium 4 Processor Optimization Application Performance Tools A

¢ displays summary information about the performance of each function, including
its name, address, the number of instructions executed, the percentage of pairing,
the total clock cyclesincurred, and the number of clock cycles incurred dueto
penalties.

Static Assembly Analysis

This feature of the VTune analyzer determines performance issues at the processor
level, including the following:

* how many clocks each instruction takes to execute and how many of them were
incurred due to penalties

* how your code is executing in the three decode units of the Pentium 4, Pentium IlI
and Pentium |1 processors.

* regardless of the processor your system is using, the static assembly analyzer
analyzes your application’s performance as it would run on Intel processors, from
Intel486™ to Pentium 4 processors.

The VTune analyzer’s static assembly analyzer analyzes basic blocks of code. It
assumes that the code and data are already in the cache and ignores loops and jumps. It
disassembles your code and displays assembly instructions, annotated with
performance information.

The static assembly analyzer disassembles hotspots or static functions in your
Windows 95, 98 and NT binary files and analyzes architectural issues that effect their
performance. You can invoke Static Assembly Analysis view either by performing a
static code analysis or by time or event-based sampling of your binary file. Click on
the View Static Assembly Analysisicon in the VTune analyzer’s toolbar to view a
static analysis of your code and display the assembly view.

Code Coach Optimizations

The code coach performs the following:

* AnayzesC, Fortran, C++, and Java* source code and produces high-level source
code optimization advice.

* Anayzesassembly code or disassembled assembly code and produces assembly
instruction optimization advice.

A-15

Intel Pentium 4 Processor Optimization Application Performance Tools A

Once the VTune analyzer identifies, analyzes, and displays the source code for
hotspots or static functionsin your application, you can invoke the coach for advice on
how to rewrite the code to optimize its performance.

Typically, acompiler is restricted by language pointer semantics when optimizing
code. Coach suggests source-level modifications to overcome these and other
restrictions. It recognizes commonly used code patterns in your application and
suggests how they can be modified to improve performance. The coach window is
shown in Figure A-4.

You can invoke the coach from the Source View window by double- clicking on aline
of code, or selecting ablock of code and then clicking on the code coach icon on the
Source View toolbar.

A-16

Intel Pentium 4 Processor Optimization Application Performance Tools A

Figure A-4 Code Coach Optimization Advice

There are 2 recommendations identified for the selected code.
Double-click on any advice for additional information.

Advice # 1

56 void udaxpy (int n, double da, double*dx, double *dy)
57

58 if (da == 0.0) return;

59

60 for (inti =0;i<n;i++)

61 dy[i] = da * dx[i] + dy[i];

62

63

64

65 void udaxpy_vec (int n, double da, double *dx, double *dy)
66 {

The MULTIPLY operation on line 61 in file C:\Program Files\Intel\
iatraining\Samples \w_daxpy_saxpy\saxpy.cpp is a candidate for a
performance boost SIMD technology. The following SIMD options are
available:

o SIMD Class Library: Using C++, declare the arrays of this

statement as objects of the F64vec?2 class defined in Intel's SIMD Class
Library, and recompile your program using the Intel® C/C++ Compiler.
This and other statements like it will be compiled using SIMD code
(“vectorized”).

o Vectorizer: Use the Intel® C/C++ Compiler vectorizer to automatically
generate highly optimized SIMD code. The statement 61 and other statements
like it will be vectorized.

o Performance Libraries: Replace your code with calls to functions in
the Intel® Performance Library Suite. Some of its functions hat are possibly
useful in your application appear below (double-click on this advice for a more
informative summary):

nspdbMpy3() or nspdbMPY1()
o Intrinsic Functions: Restructure the loop and use the SIMD intrinsic
functions recognized by the Intel® C/C++ Compiler. C-style pseudocode
for the intrinsic suggested for this statement (double-click on any function
name for a brief description):

tmpO0 = _mm_mul_pd(_mmsetl_pd((double)da), *((__m128d*)&dx[..]));

Advice # 2
56 void udaxpy (int n, double da, double*dx, double *dy)

The coach examines the entire block of code or function you selected and searches for
optimization opportunitiesin the code. Asit analyzes your code, it issues error and
warning messages much like acompiler parser. Once the coach completes analyzing
your code, if it finds suitable optimization advice, it displays the advice in a separate
window.

intel.

Intel Pentium 4 Processor Optimization Application Performance Tools A

The coach may have more than one advice for aloop or function. If no adviceis
available, it displays an appropriate message. You can double- click on any advicein
the coach window to display context-sensitive help with examples of the original and
optimized code.

Where performance can be improved using MM X technology, Streaming SIMD
Extensions, or Streaming SIMD Extensions 2 intrinsics, vector classes, or
vectorization, the coach provides advice in the form of C-style pseudocode, |eaving the
data definitions, loop control, and subscripts to the programmer.

For the code using the intrinsics, you can double-click the left mouse button on an
argument used in the code to display the description of that argument. Click your right
mouse button on an intrinsic to invoke a brief description of that intrinsic.

Assembly Coach Optimization Techniques

Assembly coach uses many optimization techniques to produce its recommended
optimized code, for example:

* |nstruction Selection—assembly coach analyzes each instruction in your code and
suggests alternate, equivalent replacements that are faster or more efficient.

* Instruction Scheduling—assembly coach usesitsin-depth knowledge of processor
behavior to suggest an optimal instruction sequence that preserves your code's
semantics.

* Peephole Optimization—assembly coach identifies particular instruction
sequences in your code and replaces them with a single, equivalent instruction.

* Partial Register Stall Elimination—assembly coach identifies instruction
sequences that can produce partial register stalls and replaces them with aternative
sequences that do not cause partial stalls.

In Automatic Optimization and Single Step Optimization modes, you can select or
desel ect these optimization types in the Assembly Coach Options tab.

A-18

Intel Pentium 4 Processor Optimization Application Performance Tools A

Intel® Performance Library Suite

The Intel® Performance Library Suite (PLS) contains a variety of specialized libraries
which has been optimized for performance on Intel processors. These optimizations
take advantage of appropriate architectural features, including MMX™ technology,
Streaming SIMD Extensions (SSE) and Streaming SIMD Extensions 2 (SSE2). The
suite includes the following libraries:

* TheIntel® Math Kernel Library: aset of linear algebra, fast Fourier transform
functions and vector transcendental functions (Vector Math Library, or VML) for
numerical analysis and scientific applications.

* TheIntel® Signa Processing Library: set of signal processing functions similar to
those available for most Digital Signal Processors (DSPs)

* TheIntel® Image Processing Library: a set of low-level image manipulation
functions

* TheIntel® Integrated Performance Primitives: a cross-platform low-level
software-layer integrating functionality across the areas of image and signal
processing, speech, computer vision, and audio/video capability. This allows
transparent use of 1PP across Intel architectures: the full range of 1A-32
enhancements, the Itanium™ architecture, the StrongARM® processor, and in the
future, the X Scale™ micro-architecture.

* The Intel® Speech Developer Toolkit: a set of class libraries and command-line
tools for researchers and devel opers to build complete large vocabul ary, speaker
independent, speech recognition systems

* TheIntel® Recognition Primitives Library: a set of 32-bit recognition primitives
for developers of speech- and character-recognition software.

Benefits Summary

The overall benefits the libraries provide to the application developers are as follows:

* Low-level building block functions that support rapid application devel opment,
improving time to market

* Highly-optimized routines with a C interface that give Assembly-level
performance in a C/C++ development environment (MKL also supports a Fortran
interface)

A-19

Intel Pentium 4 Processor Optimization Application Performance Tools A

* Processor-specific optimizations that yield the best performance for each Intel
processor

* Processor detection and DLL dispatching that loads the appropriate code for the
current processor

* Built-in error handling facility that improves productivity in the development cycle

The libraries are optimized for all Intel architecture-based processors, including the
Pentium®, Pentium 11, Pentium 111, Pentium 4, and Itanium™ processors.

Libraries Architecture

Intel Performance Libraries are designed for performance, productivity and ease of
use. The Signal Processing Library supports 1D vector-based operations typical of
those used in Signal Processing applications. The Image Processing Library supports
2D operationstypical of those used for Image Processing applications with appropriate
handling of edge effects. The Intel JPEG Library isasmall library that supports the
compression and decompression of JPEG files and images.

The Math Kernel Library (MKL) is designed for scientific and engineering
applications and supports both Fortran and C calling conventions. Its
high-performance math functions include, Linear Algebra PACKage (LINPACK),
Basic Linear Algebra Subprograms (BLAS) and fast Fourier transforms (FFTSs)
threaded to run on multiprocessor systems. No change of the code is required for
multiprocessor support. Thelibrary, including the parts which are not threaded, such as
VML, isthreadsafe. All libraries employ sophisticated memory management schemes
and processor detection.

The Intel Integrated Performance Primitives (1PP) library was derived from the kernel
operatorsinitially implemented in Signal, Image, Speech and other real-time functions.
IPP functions are light weight kernels without the predefined data structures of other
libraries. They are designed for use as building blocks for efficiently constructing and
optimizing more complex functions.

A-20

Intel Pentium 4 Processor Optimization Application Performance Tools A

Optimizations with the Intel Performance Library Suite

The Intel Performance Library Suite implements a number of optimizations that are
discussed throughout this manual. Examples include architecture-specific tuning such
asloop unrolling, instruction pairing and scheduling; and memory management with
explicit and implicit data prefetching and cache tuning.

The Suite takes advantage of the parallelism in the SIMD instructions using MM X ™
technology, Streaming SIMD Extensions (SSE), and Streaming SIMD Extensions 2
(SSE2). These techniques improve the performance of computationally intensive
algorithms and deliver hand coded performance in a high level language development
environment.

For performance sensitive applications, the Intel Performance Library Suite frees the
application devel oper from the time consuming task of assembly-level programming
for amultitude of frequently used functions. The time required for prototyping and
implementing new application features is substantially reduced and most important,
the time to market is substantially improved. Finally, applications developed with the
Intel Performance Library Suite benefit from new architectural features of future
generations of Intel processors simply by relinking the application with upgraded
versions of the libraries.

Enhanced Debugger (EDB)

The Enhanced Debugger (EDB) enables you to debug C++, Fortran or mixed language
programs running under Windows* NT or Windows 2000 (not Windows 98). It allows
you to display in a separate window the contents of the eight registers, XMMO through
XMM7, used by the Streaming SIMD Extensions and Streaming SIMD Extensions 2.
You may select one of five formats for the register fields: byte (16 bytes); word (8
words); double word (4 double words); single precision (4 single precision floating
point); and double precision (2 double precision floating point). When aregister is
updated, the new value appearsin red. The corresponding Streaming SIMD Extensions
or Streaming SIMD Extensions 2 instruction can be seen in the disassembly window.
For further detail on the features and use of the Enhanced Debugger, refer to the online
help.

A-21

Intel Pentium 4 Processor Optimization Application Performance Tools A

Intel® Architecture Performance Training Center

The Intel® Architecture Performance Training Center (IAPTC) is avaluable resource
for information about Streaming SIMD Extensions 2 (SSE2). For training on how to
use the SSE2, refer to the Computer-Based Tutorials (CBTs); for key algorithms and
their optimization examples for the Pentium 4 processor, refer to the application notes.
You can find information on IAPTC at http://devel oper.intel.com/vtune and additional
training information at http://devel oper.intel.com/software/idap/training.

intel ® A-22

http://developer.intel.com/software/idap/training
http://developer.intel.com/vtune

Intel Pentium 4 Processor
Performance Metrics

The Intel Pentium 4 processor performance metrics are a set of quantities that are
useful for tuning software performance when running applications on the Pentium 4
processor. The metrics are derived from the Pentium 4 processor performance
monitoring events, which are described in Chapter 14 and Appendix A of the |A-32
Intel Architecture Software Developer’s Manual, Volume 3: “System Programming.”

Pentium 4 Processor-Specific Terminology

Bogus,

The descriptions of the Intel Pentium 4 processor performance metrics use Pentium 4
processor-specific terminology presented in the following sections.

Non-bogus, Retire

Branch mispredictionsincur alarge penalty on microprocessors with deep pipelines. In
general, the direction of branches can be predicted with a high degree of accuracy by
the front end of the Intel Pentium 4 processor, such that most computations can be
performed aong the predicted path while waiting for the resolution of the branch.

In the event of a misprediction, instructions and micro-ops (uops) that were scheduled
to execute along the mispredicted path must be cancelled. These instructions and pops
arereferred to as bogus instructions and bogus pops. A number of Pentium 4 processor
performance monitoring events, for example, i nstruction_ retired and

nmops_r et i red, can count instructions or uops that are retired based on the
characterization of bogus versus non-bogus.

In the event descriptionsin Table B-1, the term “bogus” refers to instructions or
micro-ops that must be cancelled because they are on a path taken from a mispredicted
branch. The terms “retired” and “non-bogus” refer to instructions or micro-ops along

B-1

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

the path that results in committed architectural state changes as required by the
program execution. Thus instructions and pops are either bogus or non-bogus, but not
both.

Bus Ratio

Re

AsS

play

sist

Bus Ratio is the ratio of the processor clock to the bus clock. In the Bus Utilization
metric, it isthe Bus ratio.

In order to maximize performance for the common case, the Intel NetBurst
micro-architecture sometimes aggressively schedules pops for execution before al the
conditions for correct execution are guaranteed to be satisfied. In the event that all of
these conditions are not satisfied, uops must be reissued. This mechanismis called

replay.
Some occurrences of replays are caused by cache misses, dependence violations (for
example, store forwarding problems), and unforeseen resource constraints. In normal

operation, some number of replays are common and unavoidable. An excessive
number of replays indicate that there is a performance problem.

When the hardware needs the assistance of microcode to deal with some event, the
machine takes an assist. One example of such situation is an underflow condition in
the input operands of afloating-point operation. The hardware must internally modify
the format of the operandsin order to perform the computation. Assists clear the entire
machine of uops before they begin to accumulate, and are costly. The assist mechanism
on the Pentium 4 processor is similar in principle to that on the Pentium Il processors,
which also have an assist event.

B-2

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Tagging

Tagging is a means of marking uops to be counted at retirement. See Appendix A of
the | A-32 Intel Architecture Software Developer’s Manual, Volume 3: “ System
Programming” for the description of the tagging mechanisms. The same event can
happen more than once per pop. The tagging mechanisms allow a uop to be tagged
once during its lifetime. The retired suffix is used for metrics that increment a count
once per uop, rather than once per event. For example, auop may encounter a cache
miss more than once during its life time, but a Misses Retired metric (for example,
1st-L evel Cache Misses Retired) will increment only once for that pop.

Metrics Descriptions and Categories

Each performance metric is an expression consisting of one or more event counts,
which are collected by programming the Pentium 4 processor performance monitoring
events. Table B-1 lists the metrics, and where appropriate, references the performance
monitoring events used to form these metrics. The table also describes how to build a
metric from the Pentium 4 processor performance monitoring events.

* Column 1 specifies performance metrics. This may be a single-event metric; for
example, the metric Instructions Retired is based on the counts of the performance
monitoring eventi nstr_retired, using aspecific set of event mask bits. Or it can
be an expression built up from other metrics; for example, IPC is derived from two
single-event metrics.

® Column 2 provides a description of the metric in column 1. Please refer to the
previous section, “Pentium 4 Processor-Specific Terminology” for various terms
that are specific to the Pentium 4 processor’s performance monitoring capabilities.

* Column 3 specifies the performance monitoring event(s) or an algebraic
expression(s) that form(s) the metric. There are several metrics that require yet
another sub-event in addition to the counting event. The additional sub-event
information isincluded in column 3 as various tags, which are described in section
“Performance Metrics and Tagging Mechanisms’. For event names that appear in
this column, refer to the 1A-32 Intel Architecture Software Developer’s Manual,
Volume 3: “System Programming.”

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

* Column 4 specifies the event mask bit that is needed to use the counting event. The
addresses of various model-specific registers (MSR), the event mask bitsin Event
Select Control registers (ESCR), the bit fields in Counter Configuration Control
registers (CCCR) are described in |A-32 Intel Architecture Software Developer’s
Manual, Volume 3: “ System Programming.”

The metrics listed in Table B-1 are grouped into several categories:

Generad Operation not specific to any sub-system of the
microarchitecture.

Branching and trace cache Branching activities and trace cache operation
modes

Memory Memory operation related to the cache hierarch

Bus Activities related to Front-Side Bus (FSB)

Characterization Operations specific to the processor core

Machine Clear Occurrences of severe performance penalties

Table B-1 Pentium 4 Processor Performance Metrics

Event Name or Metric Event Mask value
Metric Description Expression required
General metrics
Clocks Clockticks See explanation on how to count
clocks in section “Counting
Clocks”.
Instructions Non-bogus IA-32 Instr_retired NBOGUSNTAG
Retired instructions executed to NBOGUSTAG
completion
IPC Instructions per cycle (Instructions Retired) /Clocks
Hops Retired Non-bogus pops executed uops_retired NBOGUS
to completion
UPC Hop per cycle pops Retired/ Clocks
Branching and Trace Cache (TC) metrics
Branches All branch instructions Branch_retired MMTMMWNMMMIT P|
Retired executed to completion MVNP
continued

intgl.

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Mispredicted Mispredicted branch M spred_branch_retired NBOGUS
Branches instructions executed to
Retired completion. This stat is

often used in a
per-instruction ratio.

Misprediction Misprediction rate per (Mispredicted Branches Retired)
Ratio branch /(Branches Retired)
Trace Cache The number of cycles that TC _del i ver _node DELI VER

Deliver Mode the trace cache is delivering
pops from the trace cache,
vs. decoding and building

traces
% In Deliver Fraction of all non-sleep (Trace Cache Deliver
Mode cycles that the trace cache Mode)*100/Clocks

is delivering pops from vs.
decoding and building

traces
Trace Cache The number of times that BPU_f et ch_r equest TCM SS
Misses significant delays occurred

in order to decode
instructions and build a
trace because of a TC

miss.
Memory metrics
1st-Level The number of retired pops | Repl ay_event ; set the following | NBOGUS
Cache Load that experienced 1st-Level replay tag:
Misses Retired | cache load misses. This 1stL_cache | oad_m ss_

stat is often used in a retired

per-instruction ratio.
2nd-| evel The number of retired pops | Replay_event; set the following NBOGUS
Cache Load that experienced 2nd-Level replay tag:
Misses Retired | cache load misses. This 2ndL_cache_| oad_mi ss_

stat is often used in a retired

per-instruction ratio.
DTLB Load The number of retired load Repl ay_event ; set the following | NBOGUS
Misses Retired | pops that experienced replay tag:

DTLB misses. DTLB | oad_m ss_retired.

continued

intgl.

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)

DTLB Store The number of retired store | Repl ay_event ; set the following | NBOGUS
Misses Retired | pops that experienced replay tag:

DTLB misses. DTLB store _miss_retired.
DTLB Load The number of retired load Repl ay_event ; set the following | NBOGUS
and Store or pops that experienced replay tag:
Misses Retired | DTLB misses. . DTLB all _mss retired.
Page Walk The number of page walk page_walk_type DTM SS
DTLB All requests due to DTLB
Misses misses from either load or

store.
ITLB Misses The number of ITLB | TLB_reference M SS

lookups that resulted in a
miss. This is more
speculative than the actual
number of page walks
resulted from ITLB misses.

Page Walk The number of page walk page_walk_type I TM SS
Miss ITLB requests due to ITLB
misses.
Split Load The number of load Menory_conpl ete LSC
Replays references to data that
spanned two cache lines.
Split Loads The number of retired load Repl ay_event ; set the following | NBOGUS
Retired pops that spanned two replay tag:
cache lines. Split_load_retired.
Split Store The number of store Menory_conpl ete SSC
Replays references that spans
across cache line boundary.
Split Stores The number of retired store | Repl ay_event ; set the following | NBOGUS
Retired Hops that spanned two replay tag: Split_store_
cache lines. retired.
MOB Load The number of replayed MOB_| oad_r epl ay PARTI AL_DATA,
Replays loads related to the Memory UNALGN_ADDR

Order Buffer (MOB). This
metric counts only the case
where the store-forwarding
data is not an aligned
subset of the stored data.

continued

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)
MOB Load The number of retired load Repl ay_event ; set the following | NBOGUS
Replays Hops that experienced replay tag:
Retired replays related to the MOB. | MOB_| oad_replay_retired.
Loads Retired | The number of retired load Front _end_event ; set the NBOGUS
operations that were following front end tag:
tagged at the front end. Menory_| oads.
Stores Retired | The number of retired Front _end_event ; set the NBOGUS
stored operations that were | following front end tag:
tagged at the front end. Menory_stores.
This stat is often used in a
per-instruction ratio.
Bus metrics
2nd-| evel The number of 2nd-level BSQ 2ndL_cache_ RD 2L_M SS
Cache Read cache read misses ref erence (Set the following
Misses CCCR bits to make
edge triggered:

Conpar e=1;

Edge=1;

Thr eshol d=0)
2nd-| evel The number of 2nd-level BSQ 2ndL_cache_ RD 2L_H TS,
Cache Read cache references reference RD_2L_HI TE,

RD 2L_H T™M

RD 2L_M SS

(Set the following

CCCR bits to make

edge triggered:

Conpar e=1,;

Edge=1;

Thr eshol d=0)
2nd- evel Fraction of 2nd |level reads (2nd-Level Cache Miss) /(2nd-Level
Cache Miss that miss Cache Read)

Ratio

continued

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Performance Metric B

Table B-1

Pentium 4 Processor Performance Metrics (continued)

Bus Accesses

The number of all bus
transactions that were
allocated in the 10 Queue

1 0Q al | ocation

ReqA0, ALL_READ,
ALL_VRI TE, ONN,
PREFETCH

(Also set the
following CCCR bits
to make edge
triggered:

Conpar e=1,;
Edge=1;

Thr eshol d=0)

Non-prefetch
Bus Accesses

The number of all bus
transactions that were
allocated in the IO Queue
excluding prefetch

1 0Q al | ocation

ReqAO, ALL_READ,
ALL_WRI TE, O\N
(Also set the
following CCCR bits
to make edge
triggered:

Conpar e=1;
Edge=1;

Thr eshol d=0)

Prefetch Ratio

Fraction of all bus
transactions (including
retires) that were for HW or
SW prefetching.

(Bus Accesses — Nonprefetch Bus
Accesses)/ (Bus Accesses)

FSB Data
Ready

The number of front-side
bus clocks that the bus is
actually being used
(including by partials)

FSB data_activity

DRDY_OWN,
DRDY_DRV

(Also set the
following CCCR bits
to make edge
triggered:

Conpar e=1;
Edge=1;

Thr eshol d=0)

Bus Utilization

The % of time that the bus
is actually occupied

(FSB Data Ready)
*Bus_r ati 0*100/ Clocks

continued

B-8

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)

Reads The number of all read 1 0Q al | ocation ReqAO, ALL_READ,
transactions on the bus that OWN, PREFETCH
were allocated in 10 Queue (Also set the

following CCCR bits
to make edge

triggered:
Conpar e=1;
Edge=1;
Thr eshol d=0)
Writes The number of all write 1 0Q al | ocation ReqAO0,
transactions on the bus that ALL_WRI TE, O\N
were allocated in 1O Queue (Also set the

following CCCR bits
to make edge
triggered:

Conpar e=1;
Edge=1;

Thr eshol d=0)

Reads The number of all read 1 0Q al | ocation RegAOQ,
Non-prefetch transactions on the bus that ALL_WRI TE, O\N
originated from the (Also set the
processor. following CCCR bits
to make edge
triggered:

Conpar e=1,;
Edge=1;

Thr eshol d=0)

continued

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)
AllWC The number of Write- 1 0Q al | ocation ReqA0, MEM W\C,
Combining (WC) memory O/N
transactions on the bus that (Also set the
originated from the following CCCR bits
processor. to make edge
triggered:
Conpar e=1,;
Edge=1;
Thr eshol d=0)
AllUC The number of UC 1 0Q al I ocation ReqAO0, MEM_UC,
(Uncacheable) memory OM
transactions on the bus that (Also set the
originated from the following CCCR bits
processor. 9
to make edge
triggered:
Conpar e=1;
Edge=1;
Thr eshol d=0)
Write WC Full The number of full-size BSQ al | ocati on REQ TYPEL1|REQ L

write (but not writeback)
transactions of the WC type
on the bus.

ENO|REQ_LENL|VEM

TYPEO|REQ DEM_
TYPE

(Also set the
following CCCR bits
to make edge
triggered:

Conpar e=1;
Edge=1;

Thr eshol d=0)

continued

B-10

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)
Write WC The number of partial write | BSQ_al | ocat i on REQ TYPEL1|REQ L
Partial (but not writeback) ENO|MEM TYPEO|RE
transactions of the WC type Q _DEM TYPE
on the bus. (Also set the
following CCCR bits
to make edge
triggered:
Conpar e=1,;
Edge=1;
Thr eshol d=0)
Characterization metrics
x87 Input The number of occurrences | X87_assi sts PREA
Assists of x87 input operands
needing assistance to
handle an exception
condition. This stat is often
used in a per-instruction
ratio.
x87 Output The number of occurrences | X87_assi sts POAQ, POAU
Assists of x87 operations needing
assistance to handle an
exception condition.
SSE Input The number of occurrences | SSE i nput _assi st ALL
Assists of SSE/SSE2 floating-point
operations needing
assistance to handle an
exception condition. The
number of occurent
includes speculative
counts.
Packed SP Non-bogus packed Execut i on_event ; set this NONBOGUSO
Retired? single-precisioninstructions | execution tag:
retired Packed_SP retired
Packed DP Non-bogus packed Execut i on_event ; set this NONBOGUSO
Retired? double-precision execution tag:

instructions retired

Packed DP retired

continued

intel.

B-11

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Table B-1 Pentium 4 Processor Performance Metrics (continued)
Scalar SP Non-bogus scalar Execut i on_event ; set this NONBOGUSO
Retired? single-precisioninstructions | execution tag:
retired Scalar_SP_retired
Scalar DP Non-bogus scalar Execut i on_event ; set this NONBOGUSO
Retired? double-precision execution tag:
instructions retired Scalar DP retired
64-bit MMX Non-bogus 64-bit integer Execution_event; set the following NONBOGUSO
Instructions SIMD instruction (MMX execution tag:
Retired? instructions) retired 64 bit MW retired
128-bit MMX Non-bogus 128-bit integer Execut i on_event ; set this NONBOGUSO
Instructions SIMD instructions retired execution tag:
Retired* 128_bi t _MWX
retired
X87 Retired? Non-bogus x87 Execut i on_event ; set this NONBOGUSO
floating-point instructions execution tag: X87_FP_retired
retired
x87 SIMD Non-bogus x87 and SIMD Execut i on_event ; set this NONBOGUSO
Memory memory operation and execution tag:
I\R/Iot_/es;j . move instructions retired X87_SI MD_nenory_
etre nmoves _retired
Machine clear metrics
Machine Clear | The number of cycles that Machi ne_cl ear CLEAR
Count the entire pipeline of the (Also Set the
machine is cleared for all following CCCR bits:
causes.
u Conpar e=1,;
Edge=1;
Thr eshol d=0)
Memory Order | The number of times that Machi ne_cl ear MOCLEAR
Machine Clear | the entire pipeline of the
machine is cleared due to
memory-ordering issues.

1. Most MMX technology instructions, Streaming SIMD Extensions and Streaming SIMD Extensions 2 decode into a
single Hop. There are some instructions that decode into several Llops; in these limited cases, the metrics count the
number of Hlops that are actually tagged.

2. Most commonly used x87 instructions (e.g. f mul , f add, f di v, f sqrt,fstp,etc...) decode into a singleflop. However,
transcendental and some x87 instructions decode into several Hops; in these limited cases, the metrics will count the number of [lops that are
actually tagged.

intel.

B-12

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Performance Metric B

3. Load and store operations, register-to-register moves for x87 floating-point instructions, MMX™ technology instructions, Streaming SIMD
Extensions, and Streaming SIMD Extensions 2 are included in this metric. Load and store operations, as well as register-to-register moves for
integer instruction are not included in this metric. Some instructions decode into several memory/moves [lops; for example, rmvdqu
contains two separate 64-bit data store operations; in these cases, the metrics count all memory/moves [lops that are actually tagged.

Performance Metrics and Tagging Mechanisms

A number of metrics require more tags to be specified in addition to programming a
counting event; for example, the metric Split Loads Retired requires specifying a
split_load_retired tagin addition to programming the repl ay_event to count at
retirement. This section describes three sets of tags that are used in conjunction with
three at-retirement counting events: f ront _end_event , repl ay_event , and

execut i on_event . Please refer to Appendix A of the “1A-32 Intel® Architecture

Software Developer’s Manual, Volume 3: System Programming” for the description of
the at-retirement events.

Tags for replay_event

Table B-2 provides alist of the tags that are used by various metricsin Table B-1.
These tags enable you to mark pops at earlier stage of execution and count the uops at
retiremnt using ther epl ay_event . These tags require at least two MSR’s (see Table
B-2, column 2 and column 3) to tag the uops so they can be detected at retirement.
Some tags require additional M SR (see Table B-2, column 4) to select the event types
for these tagged uops. The event names referenced in column 4 are those from the
Pentium 4 processor performance monitoring events.

Table B-2 Metrics That Utilize Replay Tagging Mechanism

s See Event

Bit field to set: | it field to set: Mask

IA32_PEBS _ MSR_PEBS Parameter for
Replay Metric Tags! | ENABLE MATRIX_VERT Additional MSR Replay_event
1stL_cache_| oad | BitO, BIT 24, Bit O None NBOGUS
_mss_retired BIT 25
2ndL_cache_| oad | Bit1, BIT 24, Bit 0 None NBOGUS
_mss_retired BIT 25

continued
intel. 813

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Table B-2 Metrics That Utilize Replay Tagging Mechanism (continued)

DTLB_| oad_ni ss_ | Bit2, BIT 24, Bit 0 None NBOGUS
retired BIT 25

DTLB store_miss | Bit2, BIT 24, Bit 1 None NBOGUS
_retired BIT 25

DTLB al | _miss_ Bit 2, BIT 24, Bit 0, Bit 1 None NBOGUS
retired BIT 25

MOB_| oad_ Bit 9, BIT 24, Bit 0 Select MOB_| oad_ NBOGUS
replay_retired BIT 25 r epl ay and set the

PARTI AL_DATA and
UNAL GN_ADDR bits

Split_load_ Bit 10, BIT 24, | Bit0O Select NBOGUS
retired BIT 25 Load_port _repl ay
event on SAAT_CR_ESCR1
andsetSPLIT LD bit

Split_store_ Bit 10, BIT 24, Bit 1 Select NBOGUS
retired BIT 25 Store_port_repl ay
event on SAAT_CR_ESCRO
andset SPLI T_ST bit

1. Certain kinds of pops cannot be tagged. These include 1/0O operations, UC and locked accesses, returns, and far transfers.

Tags for front_end_event

Table B-3 provides alist of the tags that are used by various metrics derived from the
front _end_event . The event names referenced in column 2 can be found from the
Pentium 4 processor performance monitoring events.

Table B-3 Table 3 Metrics that utilize the front-end tagging mechanism

See Event Mask Parameter for
Front-end MetricTags? Additional MSR Front_end_event
Menory_| oads Set the TAGLOADS bit in NBOGUS
Uop_Type
Menory_stores Set the TAGSTORES bit in NBOGUS
Uop_Type

1. There may be some undercounting of front end events when there is an overflow or underflow of the floating point stack.

intel ® B-14

Intel Pentium 4 Processor Optimization Intel Pentium 4 Processor Performance Metric B

Tags for execution_event

Table B-4 provides alist of the tags that are used by various metrics derived from the
execut i on_event . Thesetags require programming an upstream ESCR to select event
mask with its TagUop and TagVal ue bit fields. The event mask for the downstream
ESCR is specified in column 4. The event names referenced in column 4 can be found
in the Pentium 4 processor performance monitoring events.

Table B-4 Metrics that utilize the execution tagging mechanism

Tag Value in | See Event Mask

Upstream Parameter for
Execution Metric Tags Upstream ESCR ESCR Execution_event
Packed_SP_retired Set the ALL bit in the event mask 1 NBOGUSO

and the TagUop bit in the ESCR of
packed_SP_uop,

Packed_DP_retired Set the ALL bit in the event mask 1 NBOGUSO
and the TagUop bit in the ESCR of
packed_DP_uop,

Scal ar_SP_retired Set the ALL bit in the event mask 1 NBOGUSO
and the TagUop bit in the ESCR of
scal ar _SP_uop,

Scal ar _DP_retired Set the ALL bit in the event mask 1 NBOGUSO
and the TagUop bit in the ESCR of
scal ar _DP_uop,

128 _bit_MW retired Set the ALL bit in the event mask 1 NBOGUSO
and the TagUop bit in the ESCR of
128 _bi t _MwWX_uop,

64 _bit_MW retired Set the ALL bit in the event mask 1 NBOGUSO
and the TagUop bit in the ESCR of
64 _bit _MWX_uop,

X87_FP_retired Set the ALL bit in the event mask 1 NBOGUSO
and the TagUop bit in the ESCR
of x87_FP_uop,

X87_SI MD_nenory_noves_ | Setthe ALLPO and ALLP2 bits in 1 NBOGUSO
retired event mask and the TagUop bit in

the ESCR of X87_SI MD_

noves_uop,

intel. 815

Intel Pentium 4 Processor Optimization

Intel Pentium 4 Processor Performance Metric B

Counting Clocks

This section describes two ways to count processor clocks.

Thetime stamp counter increments whenever the chip is not in deep-sleep mode. It can
be read with the RDTSC instruction. The difference in values between two reads
(modulo 2**64) gives the number of processor clocks between those reads.

The performance monitoring counters can also be configured to count clocks
whenever the chip is not in deep sleep mode. To count clocks with a performance
monitoring counter, do the following:

Select any one of the 18 counters.

Select any of the possible ESCRs whose events the sel ected counter can count, and
set its event select to anything other than no_event . This may not seem necessary,
but the counter may be disabled in some cases if thisis not done.

Turn threshold comparison on in the CCCR by setting the compare bit to 1.

Set the threshold to 15 and the complement to 1 in the CCCR. Since no event can
ever exceed this threshold, the threshold condition is met every cycle, and hence
the counter counts every cycle.

Enable counting in the CCCR for that counter by setting the enable bit.

The second alternative for counting clocks is useful where counter overflow is used to
generate an interrupt and for those cases where it is easier for atool to read a
performance counter instead of the time stamp counter.

B-16

| A-32 Instruction

Latency and Throughput C

This appendix contains tables of the latency, throughput and execution units that are
associated with 1A-32 instructions. The data in these tables are specific to the Intel
Pentium 4 processor. For detailed discussions of the Intel NetBurst micro-architecture
and the relevance of instruction throughput and latency information for code tuning,
see “Execution Core Detail” in Chapter 1 and “Floating Point/SIMD Operands” in

Chapter 2.
This appendix contains the following sections:
e “Overview’— an overview of issues related to instruction selection and scheduling.

* “Definitions’ —the definitions for the primary information presented in the tables
in section “Latency and Throughput.”

e “Latency and Throughput” —the listings of 1A-32 instruction throughput, |atency
and execution units associated with each instruction.

Overview

The Pentium 4 processor uses out-of-order execution with dynamic scheduling and
buffering to tolerate poor instruction selection and scheduling that may occur in legacy
code. It can reorder pops to cover latency delays and to avoid resource conflicts. In
some cases, the micro-architecture’s ability to avoid such delays can be enhanced by
arranging |A-32 instructions. While reordering 1A-32 instructions may help, the
execution core determines the final schedule of pops.

This appendix provides information to assembly language programmers and compiler
writers, to aid in selecting the sequence of instructions which minimizes dependence
chain latency, and to arrange instructions in an order which assists the hardware in
processing instructions efficiently while avoiding resource conflicts. The performance

C-1

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

impact of applying the information presented in this appendix has been shown to be on
the order of several percent, for applications which are not completely dominated by
other performance factors, such as:

* cache misslatencies
* bus bandwidth
¢ |/O bandwidth.

Instruction selection and scheduling matters most when the compiler or assembly
programmer has already addressed the performance issues discussed in Chapter 2:

* observe store forwarding restrictions

* avoid cache line and memory order buffer splits

* do not inhibit branch prediction.

* minimize the use of xchg instructions on memory locations

While several items on the above list involve selecting the right instruction, this
appendix focuses on the following issues. These are listed in an expected priority
order, though which item contributes most to performance will vary by application.

* Maximizetheflow of popsinto the execution core. |A-32 instructions which
consist of more than four pops are executed from microcode ROM. These
instructions with longer pop flows incur a slight overhead for switching between
the execution trace cache and the microcode ROM. Transfers to microcode ROM
often reduce how efficiently pops can be packed into the trace cache. Where
possible, it is advisable to select instructions with four or fewer pops. For example,
a 32-bit integer multiply with a memory operand fits in the trace cache without
going to microcode, while a 16-bit integer multiply to memory does not.

* Avoid resource conflicts. Interleaving instructions so that they don’t compete for
the same port or execution unit can increase throughput. For example, alternating
PADDQ and PMULUDQ, each have a throughput of one issue per two clock cycles.
When interleaved, they can achieve an effective throughput of one instruction per
cycle because they use the same port but different execution units. Selecting
instructions with fast throughput also helps to preserve issue port bandwidth, hide
latency and allows for higher software performance.

C-2

Intel Pentium 4 Processor Optimization

IA-32 Instruction Latency and Throughput C

* Minimizethe latency of dependence chainsthat are on the critical path. For
example, an operation to shift left by two bits executes faster when encoded as two
adds than when it is encoded as a shift. If latency is not an issue, the shift resultsin
adenser byte encoding.

In addition to the general and specific rules, coding guidelines and the instruction data
provided in this manual, you can take advantage of the software performance analysis
and tuning tool set available at http://devel oper.intel.com/software/products/index.htm.
The tools include the VTune Performance Analyzer, with its performance-monitoring

capabilities, Intel® Graphics Performance Toolkit, and afew others.

Definitions

The IA-32 instruction performance data are listed in several tables. The tables contain
the following information:

Instruction Name: The assembly mnemonic of each instruction.

Latency:

Throughput:

Execution units:

The number of clock cycles that are required for the execution core
to compl ete the execution of all of the popsthat form alA-32
instruction.

The number of clock cycles required to wait before the issue ports
are free to accept the same instruction again. For many 1A-32
instructions, the throughput of an instruction can be significantly less
than its latency.

The names of the execution units in the execution core that are
utilized to execute the pops for each instruction. This information is
provided only for |A-32 instructions that are decoded into no more
than 4 pops. pops for instructions that decode into more than 4 pops
are supplied by microcode ROM. Note that several execution units
may share the same port, such as FP_ADD, FP_MJL, Or MX_SHFT in
the FP_EXECUTE cluster (see Figure 1-4).

C-3

http://developer.intel.com/software/products/index.htm

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

Latency and Throughput

This section presents the latency and throughput information for the I A-32 instruction
set including the Streaming SIMD Extensions 2, Streaming SIMD Extensions, MM X
technology, and most of the frequently used general-purpose integer and x87
floating-point instructions.

Due to the complexity of dynamic execution and out-of-order nature of the execution
core, the instruction latency data may not be sufficient to accurately predict realistic
performance of actual code sequences based on adding instruction latency data.

* Theinstruction latency data are only meant to provide arelative comparison of
instruction-level performance of 1A-32 instructions based on the Intel NetBurst
micro-architecture.

e All numeric datain the tables are;

— approximate and are subject to change in future implementations of the Intel
NetBurst micro-architecture.

— not meant to be used as reference numbersfor comparisons of instruction-level
performance benchmarks. Comparison of instruction-level performance of
microprocessors that are based on different micro-architecture is a complex
subject that requires additional information that is beyond the scope of this
manual .

Comparisons of latency and throughput data between the Pentium 4 processor and the
Pentium 111 processor can be misleading, because one cycle in the Pentium 4 processor
isNOT equal to one cycle in the Pentium 111 processor. The Pentium 4 processor is
designed to operate at higher clock frequencies than the Pentium 111 processor. Many

I A-32 instructions can operate with either registers as their operands or with a
combination of register/memory address astheir operands. The performance of agiven
instruction between these two types is different.

The section that follows, “Latency and Throughput with Register Operands’, gives
the latency and throughput datafor the register-to-register instruction type. Section
“Latency and Throughput with Memory Operands” discusses how to adjust latency
and throughput specifications for the register-to-memory and memory-to-register
instructions.

In some cases, the latency or throughput figures given are just one half of aclock. This
occurs only for the double-speed AL Us.

c-4

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

Latency and Throughput with Register Operands

The 1A-32 instruction latency and throughput data are presented in Table C-1 through
Table C-7. Thetablesinclude al instructions of the Streaming SIMD Extension 2,
Streaming SIMD Extension, MM X technology and most of the commonly used |A-32
instructions.

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions

Instruction Latencyl Throughput Execution Unit2
CVTDQ2PS3 xmm, xmm 5 2 FP_ADD
CVTPS2DQ3 xmm, xmm 5 2 FP_ADD
CVTTPS2DQ3 xmm, xmm 5 2 FP_ADD

MOVD xmm, r32 6 2 MMX_MISC,MMX_SHFT
MOVD r32, xmm 10 1 FP_MOVE,FP_MISC
MOVDQA xmm, xmm 6 1 FP_MOVE

MOVDQU xmm, xmm 6 1 FP_MOVE
MOVDQ2Q mm, xmm 8 2 FP_MOVE,MMX_ALU
MOVQ2DQ xmm, mm 8 2 FP_MOVE,MMX_SHFT
MOVQ xmm, xmm 2 2 MMX_SHFT
PACKSSWB/PACKSSDW/ 4 2 MMX_SHFT
PACKUSWB xmm, xmm

PADDB/PADDW/PADDD xmm, xmm 2 2 MMX_ALU
PADDSB/PADDSW/ 2 MMX_ALU
PADDUSB/PADDUSW

Xmm, xmm

PADDQ/PSUBQ mm, mm 2 1 MMX_ALU

PADDQ/ PSUBQ3 xmm, xmm 6 2 MMX_ALU

PAND xmm, xmm 2 2 MMX_ALU

PANDN xmm, xmm 2 2 MMX_ALU
PAVGB/PAVGW xmm, xmm 2 2 MMX_ALU
PCMPEQB/PCMPEQD/ 2 2 MMX_ALU
PCMPEQW xmm, xmm

PCMPGTB/PCMPGTD/PCMPGTW 2 2 MMX_ALU

Xmm, xmm

continued

intgl. cs

Intel Pentium 4 Processor Optimization

IA-32 Instruction Latency and Throughput C

Table C-1 Streaming SIMD Extension 2 128-bit Integer Instructions (continued)
Instruction Latencyl Throughput Execution Unit2
PEXTRW r32, xmm, imm8 7 2 MMX_SHFT,FP_MISC
PINSRW xmm, r32, imm8 4 2 MMX_SHFT,MMX_MISC
PMADDWD xmm, xmm 8 2 FP_MUL
PMAX xmm, xmm 2 2 MMX_ALU
PMIN xmm, xmm 2 2 MMX_ALU
PMOVMSKB3 r32, xmm 7 2 FP_MISC
PMULHUW/PMULHW/ 8 2 FP_MUL
PMULLWS3 xmm, xmm
PMULUDQ mm, mm 8 2 FP_MUL
POR xmm, xmm 2 2 MMX_ALU
PSADBW xmm, xmm 4 2 MMX_ALU
PSHUFD xmm, xmm, imm8 4 2 MMX_SHFT
PSHUFHW xmm, xmm, imm8 2 2 MMX_SHFT
PSHUFLW xmm, xmm, imm8 2 2 MMX_SHFT
PSLLDQ xmm, imm8 4 2 MMX_SHFT
PSLLW/PSLLD/PSLLQ xmm, xmm/imm8 2 2 MMX_SHFT
PSRAW/PSRAD xmm, xmm/imm8 2 2 MMX_SHFT
PSRLDQ xmm, imm8 4 2 MMX_SHFT
PSRLW/PSRLD/PSRLQ xmm, 2 2 MMX_SHFT
xmm/imm8
PSUBB/PSUBW/PSUBD xmm, xmm 2 2 MMX_ALU
PSUBSB/PSUBSW/PSUBUSB/PSUBUS MMX_ALU
W xmm, xmm
PUNPCKHBW/PUNPCKHWD/PUNPCK 4 2 MMX_SHFT
HDQ/PUNPCKHQDQ xmm, xmm
PUNPCKLBW/PUNPCKLWD/PUNPCKL 2 2 MMX_SHFT
DQ xmm, xmm
PUNPCKLQDQ3 xmm, xmm FP_MISC
PXOR xmm, xmm 2 MMX_ALU

See “Table Footnotes’

intel. co

Intel Pentium 4 Processor Optimization

IA-32 Instruction Latency and Throughput C

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point
Instructions
Instruction Latencyl Throughput Execution Unit2
ADDPD xmm, xmm 4 2 FP_ADD
ADDSD xmm, xmm 4 2 FP_ADD
ANDNPD3 xmm, xmm 4 2 MMX_ALU
ANDPD3 xmm, xmm 4 2 MMX_ALU
CMPPD xmm, xmm 4 2 FP_ADD
CMPSD xmm, xmm, imm8 4 2 FP_ADD
COMISD xmm, xmm 6 2 FP_ADD, FP_MISC
CVTDQ2PD xmm, xmm 8 3 FP_ADD, MMX_SHFT
CVTPD2PI mm, xmm 11 3 FP_ADD, MMX_SHFT,MMX_ALU
CVTPD2DQ xmm, xmm 9 2 FP_ADD, MMX_SHFT
CVTPD2PS3 xmm, xmm 10 2 FP_ADD, MMX_SHFT
CVTPI2PD xmm, mm 11 4 FP_ADD, MMX_SHFT,MMX_ALU
CVTPS2PD3 xmm, xmm 10 4 FP_ADD, MMX_SHFT,MMX_ALU
CVTSD2SI r32, xmm 8 2 FP_ADD, FP_MISC
CVTSD2SS3 xmm, xmm 16 4 FP_ADD, MMX_SHFT
CVTSI2SD3 xmm, r32 15 3 FP_ADD, MMX_SHFT, MMX_MISC
CVTSS2SD3 xmm, xmm 14 3
CVTTPD2PI mm, xmm 11 3 FP_ADD, MMX_SHFT,MMX_ALU
CVTTPD2DQ xmm, xmm 2 FP_ADD, MMX_SHFT
CVTTSD2SI r32, xmm 2 FP_ADD, FP_MISC
DIVPD xmm, xmm 62 62 FP_DIV
DIVSD xmm, xmm 35 35 FP_DIV
MAXPD xmm, xmm 4 2 FP_ADD
MAXSD xmm, xmm 4 2 FP_ADD
MINPD xmm, xmm 4 2 FP_ADD
MINSD xmm, xmm 4 2 FP_ADD
MOVAPD xmm, xmm 6 1 FP_MOVE
MOVMSKPD r32, xmm 6 2 FP_MISC
contniued
Int9I ® C-7

Intel Pentium 4 Processor Optimization

IA-32 Instruction Latency and Throughput C

Table C-2 Streaming SIMD Extension 2 Double-precision Floating-point
Instructions (continued)

Instruction Latencyl Throughput Execution Unit2
MOVSD xmm, xmm 6 2 MMX_SHFT
MOVUPD xmm, xmm 6 1 FP_MOVE
MULPD xmm, xmm 6 2 FP_MUL
MULSS xmm, xmm 6 2 FP_MUL
ORPD3 xmm, xmm 4 2 MMX_ALU
SHUFPD3 xmm, xmm, imm8 6 2 MMX_SHFT
SQRTPD xmm, xmm 62 62 FP_DIV
SQRTSD xmm, xmm 35 35 FP_DIV

SUBPD xmm, xmm 4 2 FP_ADD
SUBSD xmm, xmm 4 2 FP_ADD
UCOMISD xmm, xmm 6 2 FP_ADD, FP_MISC
UNPCKHPD3 xmm, xmm 6 2 MMX_SHFT
UNPCKLPD3 xmm, xmm 4 2 MMX_SHFT
XORPD3 xmm, xmm 4 2 MMX_ALU

See “Table Footnotes’

Table C-3 Streaming SIMD Extension Single-precision Floating-point

Instructions

Instruction Latencyl Throughput Execution Unit2

ADDPS xmm, xmm 4 2 FP_ADD

ADDSS xmm, xmm 4 2 FP_ADD

ANDNPS3 xmm, xmm 4 2 MMX_ALU

ANDPS3 xmm, xmm 4 2 MMX_ALU

CMPPS xmm, xmm 4 2 FP_ADD

CMPSS xmm, xmm 4 2 FP_ADD

COMISS xmm, xmm 6 2 FP_ADD,FP_MISC

CVTPI2PS xmm, mm 11 4 MMX_ALU,FP_ADD,MMX_SHFT

contniued

|nte|® c-8

Intel Pentium 4 Processor Optimization

IA-32 Instruction Latency and Throughput C

Table C-3 Streaming SIMD Extension Single-precision Floating-point
Instructions (continued)
Instruction Latencyl Throughput Execution Unit2
CVTPS2PI mm, xmm 7 2 FP_ADD,MMX_ALU
CVTSI2SS3 xmm, r32 11 2 FP_ADD,MMX_SHFT, MMX_MISC
CVTSS2SI r32, xmm 2 FP_ADD,FP_MISC
CVTTPS2PI mm, xmm 2 FP_ADD,MMX_ALU
CVTTSS2SI r32, xmm 2 FP_ADD,FP_MISC
DIVPS xmm, xmm 32 32 FP_DIV
DIVSS xmm, xmm 22 22 FP_DIV
MAXPS xmm, xmm 4 2 FP_ADD
MAXSS xmm, xmm 4 2 FP_ADD
MINPS xmm, xmm 4 2 FP_ADD
MINSS xmm, xmm 4 2 FP_ADD
MOVAPS xmm, xmm 6 1 FP_MOVE
MOVHLPS3 xmm, xmm 6 2 MMX_SHFT
MOVLHPS3 xmm, xmm 4 2 MMX_SHFT
MOVMSKPS r32, xmm 6 2 FP_MISC
MOVSS xmm, xmm 4 2 MMX_SHFT
MOVUPS xmm, xmm 6 1 FP_MOVE
MULPS xmm, xmm 6 2 FP_MUL
MULSS xmm, xmm 6 2 FP_MUL
ORPS3 xmm, xmm 4 2 MMX_ALU
RCPPS3 xmm, xmm 6 4 MMX_MISC
RCPSS3 xmm, xmm 6 2 MMX_MISC,MMX_SHFT
RSQRTPS3 xmm, xmm 6 4 MMX_MISC
RSQRTSS3 xmm, xmm 6 4 MMX_MISC,MMX_SHFT
SHUFPS3 xmm, xmm, imm8 6 2 MMX_SHFT
SQRTPS xmm, xmm 32 32 FP_DIV
SQRTSS xmm, xmm 22 22 FP_DIV
SUBPS xmm, xmm 4 2 FP_ADD
contniued
Int9I ® C-9

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

Table C-3 Streaming SIMD Extension Single-precision Floating-point
Instructions (continued)

Instruction Latencyl Throughput Execution Unit2
SUBSS xmm, xmm 4 2 FP_ADD
UCOMISS xmm, xmm 6 2 FP_ADD, FP_MISC
UNPCKHPS3 xmm, xmm 6 2 MMX_SHFT
UNPCKLPS3 xmm, xmm 4 2 MMX_SHFT
XORPS3 xmm, xmm 4 2 MMX_ALU

See “Table Footnotes’

Table C-4 Streaming SIMD Extension 64-bit Integer Instructions

Instruction Latencyl Throughput Execution Unit
PAVGB/PAVGW mm, mm 2 1 MMX_ALU

PEXTRW r32, mm, imm8 7 2 MMX_SHFT,FP_MISC
PINSRW mm, r32, imm8 4 1 MMX_SHFT,MMX_MISC
PMAX mm, mm 2 1 MMX_ALU

PMIN mm, mm 2 1 MMX_ALU
PMOVMSKBS r32, mm 7 2 FP_MISC

PMULHUW3 mm, mm 8 1 FP_MUL

PSADBW mm, mm 4 1 MMX_ALU

PSHUFW mm, mm, imm8 2 1 MMX_SHFT

See “Table Footnotes’

intel ® C-10

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

Table C-5 MMX™ Technology 64-bit Instructions

Instruction Latencyl Throughput Execution Unit2
MOVD mm, r32 2 1 MMX_ALU
MOVD3 r32, mm 5 1 FP_MISC
MOVQ mm, mm 6 1 FP_MOV
PACKSSWB/PACKSSDW/PACKUS 2 1 MMX_SHFT
WB mm, mm

PADDB/PADDW/PADDD mm, mm 2 1 MMX_ALU
PADDSB/PADDSW 2 1 MMX_ALU
/PADDUSB/PADDUSW mm, mm

PAND mm, mm 2 1 MMX_ALU
PANDN mm, mm 2 1 MMX_ALU
PCMPEQB/PCMPEQD 2 1 MMX_ALU
PCMPEQW mm, mm

PCMPGTB/PCMPGTD/ 2 1 MMX_ALU
PCMPGTW mm, mm

PMADDWD3 mm, mm 8 1 FP_MUL
PMULHW/PMULLW3 mm, mm 8 1 FP_MUL
POR mm, mm 2 1 MMX_ALU
PSLLQ/PSLLW/ 2 1 MMX_SHFT
PSLLD mm, mm/imm8

PSRAW/PSRAD mm, mm/imm8 2 1 MMX_SHFT
PSRLQ/PSRLW/PSRLD mm, 2 1 MMX_SHFT
mm/imm8

PSUBB/PSUBW/PSUBD mm, mm 2 1 MMX_ALU
PSUBSB/PSUBSW/PSUBUSB/PSU 2 1 MMX_ALU
BUSW mm, mm

PUNPCKHBW/PUNPCKHWD/PUN 2 1 MMX_SHFT
PCKHDQ mm, mm

PUNPCKLBW/PUNPCKLWD/PUNP 2 1 MMX_SHFT
CKLDQ mm, mm

PXOR mm, mm 2 1 MMX_ALU
EMMS!? 12 12

See “Table Footnotes’

Inte|® C-11

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

Table C-6 1A-32 x87 Floating-point Instructions

Instruction Latencyl Throughput Execution Unit2
FABS 2 1 FP_MISC
FADD 5 1 FP_ADD
FSUB 5 1 FP_ADD
FMUL 7 2 FP_MUL
FCOM 2 1 FP_MISC
FCHS 2 1 FP_MISC
FDIV Single Precision 23 23 FP_DIV
FDIV Double Precision 38 38 FP_DIV
FDIV Extended Precision 43 43 FP_DIV
FSQRT SP 23 23 FP_DIV
FSQRT DP 38 38 FP_DIV
FSQRT EP 43 43 FP_DIV
F2XM14 90-150 60

FCOs4 190-240 130

FPATAN4 150-300 140

FPTAN4 225-250 170

FSIN4 160-180 130

FSINCOS# 160-220 140

FYL2X4 140-190 85

FYL2XP14 140-190 85

FSCALE4 60 7

FRNDINT4 30 11

FXCH?® 0 1 FP_MOVE

See “Table Footnotes’

intel ® C-12

Intel Pentium 4 Processor Optimization

IA-32 Instruction Latency and Throughput C

Table C-7 1A-32 General Purpose Instructions
Instruction Latencyl Throughput Execution Unit2
ADC/SBB reg, reg 8 3
ADC/SBB reg, imm 6 2 ALU
ADD/SUB 0.5 0.5 ALU
AND/OR/XOR 0.5 0.5 ALU
CMP/TEST 0.5 0.5 ALU
DEC/INC 1 0.5 ALU
IMUL r32 14 3 FP_MUL
IMUL imm32 14 FP_MUL
IMUL 15-18
IDIV 56-70 23
IN/OUT! <225 40
Jccb Not Applicable 0.5 ALU
LOOP 8 15 ALU
MOV 0.5 0.5 ALU
MOVSB/MOVSW 0.5 0.5 ALU
MOVZB/MOVZW 0.5 0.5 ALU
NEG/NOT/NOP 0.5 0.5 ALU
POP r32 1.5 1 MEM_LOAD,ALU
PUSH 15 1 MEM_STORE,ALU
RCL/RCR reg, 16 4 1
RCL/RCR reg, 17 4 1
ROL/ROR 4 1
RET 8 1 MEM_LOAD,ALU
SAHF 0.5 0.5 ALU
SAL/SAR/SHL/SHR 4 1
SCAS 4 1.5 ALU,MEM_LOAD
SETcc 5 15 ALU
STOSB 5 2 ALU,MEM_STORE
XCHG 15 ALU

continued

intel.

C-13

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

Table C-7 1A-32 General Purpose Instructions (continued)

Instruction Latencyl Throughput Execution Unit2
CALL 5 1 ALU,MEM_STORE
MUL 14-18 5

DIv 56-70 23

See “Table Footnotes’

Table Footnotes

The following footnotes refer to all tablesin this appendix.

1. Latency information for many of instructions that are complex (> 4 pops) are
estimates based on conservative and worst-case estimates. Actual performance of
these instructions by the out-of-order core execution unit can range from
somewhat faster to significantly faster than the nominal latency data shown in
these tables.

2. The names of execution unitsinclude: ALU, FP_EXECUTE, FPMOVE, MEM LOAD,
MEM_STORE. See Figure 1-4 for execution units and portsin the out-of-order core.
Note the following:

» TheFP_EXECUTE unit is actually acluster of execution units, roughly
consisting of seven separate execution units.

» TheFP_ADD unit handles x87 and SIMD floating-point add and subtract
operation.

* TheFP_MJL unit handles x87 and SIMD floating-point multiply operation.

* TheFP_D Vv unit handles x87 and SIMD floating-point divide square-root
operations.

» The Mw_SHFT unit handles shift and rotate operations.

* The Mw_ALU unit handles SIMD integer ALU operations.

* TheMw_M sc unit handles reciprocal MM X computations and some integer
operations.

» TheFpP_M SCdesignates other execution unitsin port 1 that are separated from
the six units listed above.

intel ® c-14

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

3. It may be possible to construct repetitive calls to some I A-32 instructions in code
sequences to achieve latency that is one or two clock cycles faster than the more
realistic number listed in this table.

4. Latency and Throughput of transcendental instructions can vary substantially in a
dynamic execution environment. Only an approximate value or arange of values
are given for these instructions.

5. The FXCH instruction has O latency in code sequences. However, it islimited to
an issue rate of one instruction per clock cycle.

6. Selection of conditional jump instructions should be based on the
recommendation of section “Branch Prediction” to improve the predictability of
branches. When branches are predicted successfully, the latency of jccis
effectively zero.

7. RCL/RCR with shift count of 1 are optimized. Using RCL/RCR with shift count
other than 1 will be executed more slowly.

Latency and Throughput with Memory Operands

Typicaly, instructions with amemory address as the source operand, add one more
pop to the “reg, reg” instructions type listed in Table C-1 through C-7. However, the
throughput in most cases remains the same because the load operation utilizes port 2
without affecting port O or port 1.

Many |A-32 instructions accept a memory address as either the source operand or as
the destination operand. The former is commonly referred to as aload operation, while
the latter a store operation.

The latency for 1A-32 instructions that perform either aload or a store operation are
typically longer than the latency of corresponding register-to-register type of the |A-32
instructions. Thisis because load or store operations require access to the cache
hierarchy and, in some cases, the memory sub-system.

For the sake of simplicity, all databeing requested is assumed to reside in thefirst level
data cache (cache hit). In general, 1A-32 instructions with load operations that execute
in the integer ALU units require two more clock cycles than the corresponding

C-15

Intel Pentium 4 Processor Optimization IA-32 Instruction Latency and Throughput C

register-to-register flavor of the same instruction. Throughput of these instructions
with load operation remains the same with the register-to-register flavor of the
instructions.

Floating-point, MM X technology, Streaming SIMD Extensions and Streaming SIMD
Extension 2 instructions with load operations require 6 more clocks in latency than the
register-only version of the instructions, but throughput remains the same.

When store operations are on the critical path, their results can generally be forwarded
to adependent load in as few as zero cycles. Thus, the latency to complete and store
isn’t relevant here.

C-16

Sack Alignment

This appendix details on the aignment of the stacks of datafor Streaming SIMD
Extensions and Streaming SIMD Extensions 2.

Stack Frames

This section describes the stack alignment conventions for both esp-based (normal),
and ebp-based (debug) stack frames. A stack frameis a contiguous block of memory
allocated to afunction for its local memory needs. It contains space for the function’s
parameters, return address, local variables, register spills, parameters needing to be
passed to other functionsthat astack frame may call, and possibly others. Itistypicaly
delineated in memory by a stack frame pointer (esp) that points to the base of the
frame for the function and from which all data are referenced via appropriate offsets.
The convention on 1A-32 isto use the esp register as the stack frame pointer for
normal optimized code, and to use ebp in place of esp when debug information must
be kept. Debuggers use the ebp register to find the information about the function via
the stack frame.

It isimportant to ensure that the stack frame is aligned to a 16-byte boundary upon
function entry to keep local __ni28 data, parameters, and xmmregister spill locations
aligned throughout a function invocation.The Intel C++ Compiler for Win32* Systems
supports conventions presented here help to prevent memory references from incurring
penalties due to misaligned data by keeping them aligned to 16-byte boundaries. In
addition, this scheme supports improved alignment for __n64 and doubl e type data
by enforcing that these 64-bit data items are at |east eight-byte aligned (they will now
be 16-byte aligned).

For variables allocated in the stack frame, the compiler cannot guarantee the base of
the variable is aligned unless it also ensures that the stack frame itself is 16-byte
aligned. Previous 1 A-32 software conventions, asimplemented in most compilers, only

D-1

Intel Pentium 4 Processor Optimization Sack Alignment D

ensure that individual stack frames are 4-byte aligned. Therefore, afunction called
from a Microsoft* -compiled function, for example, can only assume that the frame
pointer it used is 4-byte aligned.

Earlier versions of the Intel C++ Compiler for Win32 Systems have attempted to
provide 8-byte aligned stack frames by dynamically adjusting the stack frame pointer
in the prologue of mai n and preserving 8-byte alignment of the functions it compiles.
This techniqueislimited in its applicability for the following reasons:

* Themai n function must be compiled by the Intel C++ Compiler.

* There may be no functionsin the call tree compiled by some other compiler (as
might be the case for routines registered as callbacks).

® Support is not provided for proper alignment of parameters.

The solution to this problem is to have the function’s entry point assume only 4-byte
alignment. If the function has aneed for 8-byte or 16-byte alignment, then code can be
inserted to dynamically align the stack appropriately, resulting in one of the stack
frames shown in Figure D-1.

D-2

Intel Pentium 4 Processor Optimization Sack Alignment D

Figure D-1 Stack Frames Based on Alignment Type

ESP-based Aligned Frame EBP-based Aligned Frame
Parameters Parameters
Return Address Return Address
Parameter Parameter
Padding Pointer Padding Pointer
Register Save Area Return Address 1
Local Variables and Previous EBP
Spill Slots «— EBP
SEH/CEH Record
_F():dec_l Pasrameter Local Variables and
assing >pace Spill Slots
ESP
__stdcall Parameter EBP-frame Saved
Passing Space Register Area
ESP

Parameter Passing
Space

As an optimization, an alternate entry point can be created that can be called when
proper stack alignment is provided by the caller. Using call graph profiling of the
VTune analyzer, callsto the normal (unaligned) entry point can be optimized into calls
to the (alternate) aligned entry point when the stack can be proven to be properly
aligned. Furthermore, a function alignment requirement attribute can be modified
throughout the call graph so as to cause the least number of callsto unaligned entry
points. As an example of this, suppose function F has only a stack alignment
requirement of 4, but it calls function G at many call sites, and in aloop. If G's
alignment requirement is 16, then by promoting F's alignment requirement to 16, and
making all callsto G go to its aligned entry point, the compiler can minimize the
number of times that control passes through the unaligned entry points. Example D-1
and Example D-2 in the following sections illustrate this technique. Note the entry
pointsf oo and f oo. al i gned, the latter is the aternate aligned entry point.

D-3

Intel Pentium 4 Processor Optimization Sack Alignment D

Aligned esp-Based Stack Frames

This section discusses data and parameter alignment and the decl spec(al i gn)
extended attribute, which can be used to request alignment in C and C++ code. In
creating esp-based stack frames, the compiler adds padding between the return address
and the register save area as shown in Example 3-9. This frame can be used only when
debug information is not requested, there is no need for exception handling support,
inlined assembly is not used, and there are no callsto al | oca within the function.

If the above conditions are not met, an aligned ebp-based frame must be used. When
using this type of frame, the sum of the sizes of the return address, saved registers,
local variables, register spill slots, and parameter space must be amultiple of 16 bytes.
This causes the base of the parameter space to be 16-byte aligned. In addition, any
space reserved for passing parametersfor st dcal | functions also must be a multiple of
16 bytes. This meansthat the caller needs to clean up some of the stack space when the
size of the parameters pushed for acall to ast dcal I functionisnot amultiple of 16. If
the caller does not do this, the stack pointer is not restored to its pre-call value.

In Example D-1, we have 12 bytes on the stack after the point of alignment from the
caller: the return pointer, ebx and edx. Thus, we need to add four more to the stack
pointer to achieve alignment. Assuming 16 bytes of stack space are needed for local
variables, the compiler adds 16 + 4 = 20 bytes to esp, making esp aligned to a0 mod
16 address.

D-4

Intel Pentium 4 Processor Optimization Sack Alignment D

Example D-1 Aligned esp-Based Stack Frames

void _cdecl foo (int k)

{
int j;
f oo: /1 See Note A
push ebx
nov ebx, esp
sub esp, 0x00000008
and esp, Oxfffffffo
add esp, 0x00000008
jmp conmon
f 0o. al i gned:
push ebx
nov ebx, esp
conmmon: /] See Note B
push edx
sub esp, 20
=K
nov edx, [ebx + 8]
nov [esp + 16], edx
foo(5);
nov [esp], 5
cal | foo. al i gned
return j;
nov eax, [esp + 16]
add esp, 20
pop edx
nov esp, ebx
pop ebx
ret

Intel Pentium 4 Processor Optimization Sack Alignment D

E NOTE. A. Aligned entry points assume that parameter block
e beginnings are aligned. This places the stack pointer at a 12 mod
16 boundary, as the return pointer has been pushed. Thus, the
unaligned entry point must force the stack pointer to this
boundary.
B. The code at the common label assumes the stack isat an
8 mod 16 boundary, and adds sufficient space to the stack so that
the stack pointer isaligned to a 0 mod 16 boundary.

Aligned ebp-Based Stack Frames

In ebp-based frames, padding is aso inserted immediately before the return address.
However, thisframeis slightly unusual in that the return address may actually residein
two different places in the stack. This occurs whenever padding must be added and
exception handling isin effect for the function. Example D-2 shows the code generated
for this type of frame. The stack location of the return addressis aligned 12 mod 16.
This means that the value of ebp always satisfies the condition (ebp & 0x0f) ==
0x08. In this case, the sum of the sizes of the return address, the previous ebp, the
exception handling record, the local variables, and the spill area must be a multiple of
16 bytes. In addition, the parameter passing space must be a multiple of 16 bytes. For a
call toastdcal I function, itisnecessary for the caller to reserve some stack space if
the size of the parameter block being pushed is not a multiple of 16.

D-6

Intel Pentium 4 Processor Optimization

Sack Alignment [)

Example D-2 Aligned ebp-based Stack Frames

void _stdcall foo (int k)

{
int j;

f oo:
push
nmov
sub
and
add

jmp

ebx

ebx, esp

esp, 0x00000008
esp, Oxfffffffo
esp, 0x00000008
conmon

f 0o. al i gned:

push

mov
conmon:

push

push

ebx
ebx, esp

ebp

ebp

ebp, [ebx + 4]
[esp + 4], ebp

ebp, esp
esp, 28

edx

/!l espis (8 nod 16) after add

/1 esp is (8 md 16) after push

// this slot will be used for
/1 duplicate return pt

/!l espis (0 nod 16) after push
/'l (rtn, ebx, ebp, ebp)

/1 fetch return pointer and store

/'l relative to ebp
/1 (rtn, ebx,rtn, ebp)

/1 ebp is (0 nod 16)

/1l esp is (4 nod 16)

//see Note A

/1 espis (0 md 16) after push

/'l the goal is to make esp and ebp
/1 (0 nod 16) here

continued

Intel Pentium 4 Processor Optimization

Sack Alignment [)

Example D-2 Aligned ebp-based Stack Frames (continued)

i =k
mov edx, [ebx + 8]
nov [ebp - 16], edx
foo(5);
add esp, -4
nov [esp].,5
cal | foo
f oo. al i gned(5);
add esp, - 16
nov [esp]., 5
cal | foo. al i gned
add esp, 12
return j;
nov eax, [ebp- 16]
pop edx
nov esp, ebp
pop ebp
nov esp, ebx
pop ebx
ret 4

11
11

I

11
I

11
I

11
11

I

k is (0 nod 16)
its stack

Jis (0 nmod 16)

if caller aligned

normal call sequence to
unaligned entry

for stdcall, callee
cl eans up stack

aligned entry, this should
be a multiple of 16

see Note B

Intel Pentium 4 Processor Optimization Sack Alignment D

g NOTE. A. Herewe allow for local variables. However, this value
= should be adjusted so that, after pushing the saved registers, espis
0 mod 16.

B. Just prior to the call, esp is 0 mod 16. To maintain
alignment, esp should be adjusted by 16. When a callee uses the
stdcall calling sequence, the stack pointer isrestored by the callee.
The final addition of 12 compensates for the fact that only 4 bytes
were passed, rather than 16, and thus the caller must account for
the remaining adjustment.

Stack Frame Optimizations

The Intel C++ Compiler provides certain optimizations that may improve the way
aligned frames are set up and used. These optimizations are as follows:

* |f aprocedureisdefined to leave the stack frame 16-byte-aligned and it calls
another procedure that requires 16-byte alignment, then the callee’s aligned entry
point is called, bypassing all of the unnecessary aligning code.

e |f adtatic function requires 16-byte alignment, and it can be proven to be called
only by other functions that require 16-byte alignment, then that function will not
have any alignment code in it. That is, the compiler will not use ebx to point to the
argument block and it will not have aternate entry points, because this function
will never be entered with an unaligned frame.

Inlined Assembly and ebx

When using aligned frames, the ebx register generally should not be modified in
inlined assembly blocks since ebx is used to keep track of the argument block.
Programmers may modify ebx only if they do not need to access the arguments and
provided they save ebx and restore it before the end of the function (since esp is
restored relative to ebx in the function’s epilog).

Intel Pentium 4 Processor Optimization Sack Alignment D

For additional information on the use of ebx in inline assembly code and other related
issues, see relevant application notes in the Intel Architecture Performance Training
Center.

A CAUTION. Do not usethe ebx register in inline assembly functions
that use dynamic stack alignment for double, __m64, and __m128
local variables unless you save and restore ebx each time you use it.
TheIntel C++ Compiler usesthe ebx register to control alignment of
variables of these types, so the use of ebx, without preserving it, will
cause unexpected program execution.

intel. b10

Mathematics
of Prefetch Scheduling
Distance E

This appendix discusses how far away to insert prefetch instructions. It presents a
mathematical model allowing you to deduce a simplified equation which you can use
for determining the prefetch scheduling distance (PSD) for your application.

For your convenience, the first section presents this simplified equation; the second
section provides the background for this equation: the mathematical model of the
calculation.

Simplified Equation

A simplified equation to compute PSD is as follows:

osd = Nlookup + Nxfer LN, ¢ + Ng)
CPI [N, &

where

psd is prefetch scheduling distance.

Nl ookup is the number of clocks for lookup latency. This parameter is
system-dependent. The type of memory used and the chipset
implementation affect its value.

Nxf er is the number of clocksto transfer a cache-line. This parameter is
Implementation-dependent.

Nprer @Nd N are the numbers of cache linesto be prefetched and stored.

CPI is the number of clocks per instruction. This parameter is
Implementation-dependent.

N hst Is the number of instructions in the scope of one loop iteration.

intel. £l

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Consider the following example of a heuristic equation assuming that parameters have
the values as indicated:

60 + 25 [N, ¢
15N,

inst

+ Ng)

psd:‘

where 60 corresponds to Nl ookup, 25 to Nxf er, and 1.5 to CPI .

The values of the parameters in the equation can be derived from the documentation
for memory components and chipsets as well as from vendor datasheets.

A CAUTION. Thevaluesin this example arefor illustration only and do
not represent the actual values for these parameters. The example is
provided as a “ starting point approximation” of calculating the
prefetch scheduling distance using the above formula. Experimenting
with the instruction around the “ starting point approximation” may
be required to achieve the best possible performance.

Mathematical Model for PSD

The parameters used in the mathematics discussed are as follows:

psd prefetch scheduling distance (measured in number of iterations)

il iteration latency

Te computation latency per iteration with prefetch caches

T memory |leadoff latency including cache miss latency, chip set
latency, bus arbitration, etc.

Tp datatransfer latency which is equal to number of lines per iteration *

line burst latency

Note that the potential effects of pop reordering are not factored into the estimations
discussed.

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Examine Example E-1 that uses the pr ef et chnt a instruction with a prefetch
scheduling distance of 3, that is, psd = 3. The data prefetched in iteration i, will
actually be used initeration i+ 3. T, represents the cycles needed to executet op_| oop -
assuming al the memory accesses hit L1 whileil (iteration latency) represents the
cycles needed to execute this loop with actually run-time memory footprint. T, can be
determined by computing the critical path latency of the code dependency graph. This
work is quite arduous without help from special performance characterization tools or
compilers. A simple heuristic for estimating the T, value is to count the number of
instructions in the critical path and multiply the number with an artificial CPI. A
reasonable CPI value would be somewhere between 1.0 and 1.5 depending on the
quality of code scheduling.

Example E-1 Calculating Insertion for Scheduling Distance of 3

top_| oop:
prefetchnta [edx+esi +32*3]
prefetchnta [edx*4+esi +32*3]

nmovaps xmil, [edx+esi]
novaps xm2, [edx*4+esi]
novaps xmB, [edx+esi +16]
nmovaps xmd, [edx*4+esi +16]

add esi, 32
cnp esi, ecx
j1 top_l oop

Memory access plays a pivotal rolein prefetch scheduling. For more understanding of
amemory subsystem, consider Streaming SIMD Extensions and Streaming SIMD
Extensions 2 memory pipeline depicted in Figure E-1.

intel. £s

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Figure E-1 Pentium Il, Pentium Ill and Pentium 4 Processors Memory Pipeline Sketch

T, N T,

D 28 4
T 2. 4 ?
I o 4

. L2 lookup miss latency

N Memory page access |leadoff latency

. 2 . 4 Latency for 4 chunks returned per line

Assume that three cache lines are accessed per iteration and four chunks of data are
returned per iteration for each cache line. Also assume these 3 accesses are pipelined in
memory subsystem. Based on these assumptions,

Tp=3* 4=12FSB cycles.

T, varies dynamically and is also system hardware-dependent. The static variants
include the core-to-front-side-bus ratio, memory manufacturer and memory controller
(chipset). The dynamic variants include the memory page open/miss occasions,
memory accesses sequence, different memory types, and so on.

To determine the proper prefetch scheduling distance, follow these steps and formulae:
* Optimize T, as much as possible

intel.

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

* Usethefollowing set of formulae to calculate the proper prefetch scheduling
distance:

T. 2T+ Ts pad =1 il=T.
T+ 7]
Ti+Te>=>T->Ts el = [| il=T-
T
T) -
Tez T pad =1+ [T_l i="1s

* Schedule the prefetch instructions according to the computed prefetch scheduling
distance.

For optimized memory performance, apply techniques described in “Memory
Optimization Using Prefetch” in Chapter 6.

The following sections explain and illustrate the architectural considerations involved
in the prefetch scheduling distance formulae above.

No Preloading or Prefetch

The traditional programming approach does not perform data prel oading or prefetch. It
is sequential in nature and will experience stalls because the memory is unable to
provide the data immediately when the execution pipeline requires it. Examine
Figure E-2.

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Figure E-2 Execution Pipeline, No Preloading or Prefetch

Execution cycles

\J

Execution

pipeline [LLlail . Bxecution unitsidle R
i 5
Front-Side|
Bus
< .. > < ... >

it iteration (i+1)™ iteration

Asyou can seefrom Figure E-2, the execution pipelineis stalled while waiting for data
to be returned from memory. On the other hand, the front side busisidle during the
computation portion of the loop. The memory access latencies could be hidden behind
execution if data could be fetched earlier during the bus idle time.

Further analyzing Figure 6-10,
* assume execution cannot continue till last chunk returned and
* 9 indicates flow data dependency that stalls the execution pipelines

With these two thingsin mind the iteration latency (il) is computed as follows:
i1O0T +T,+T,

The iteration latency is approximately equal to the computation latency plus the
memory |leadoff latency (includes cache miss latency, chipset latency, bus arbitration,
and so on.) plus the data transfer latency where

transfer latency= number of lines per iteration * line burst latency.

This means that the decoupled memory and execution are ineffective to explore the
parallelism because of flow dependency. That is the case where prefetch can be useful
by removing the bubbles in either the execution pipeline or the memory pipeline.

E-6

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

With an ideal placement of the data prefetching, the iteration latency should be either
bound by execution latency or memory latency, that is

il = maximum(T, T).

Compute Bound (Case:Tc >= T, + Tp)

Figure E-3 represents the case when the compute latency is greater than or equal to the
memory |leadoff latency plus the data transfer latency. In this case, the prefetch
scheduling distance isexactly 1, i.e. prefetch data one iteration ahead is good enough.
The datafor loop iteration i can be prefetched during loop iteration i-1, the & symbol
between front-side bus and execution pipeline indicates the data flow dependency.

Figure E-3 Compute Bound Execution Pipeline

Execution cycles

Iteration i Iteration i+1

< > o
-« > <

61‘

execution pipetine [.

Y

The following formula shows the relationship among the parameters:

psd = [T- : '.TI--‘

It can be seen from this relationship that the iteration latency is equal to the
computation |latency, which means the memory accesses are executed in background
and their latencies are completely hidden.

| =T

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Compute Bound (Case: T, + T, > T, > Tp)
Now consider the next case by first examining Figure E-4.

Figure E-4 Compute Bound Execution Pipeline

Execution cycles

Front-Side Bus

For this particular example the prefetch scheduling distance is greater than 1. Data
being prefetched for iteration i will be consumed in iteration i+2.

Figure 6-12 represents the case when the leadoff latency plus data transfer latency is
greater than the compute latency, which is greater than the data transfer latency. The
following relationship can be used to compute the prefetch scheduling distance.

;?.l.'.rf:"n-kn-l:-l =T

In consequence, the iteration latency is also equal to the computation latency, that is,
compute bound program.

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Memory Throughput Bound (Case: Ty, >=T,)

When the application or loop is memory throughput bound, the memory latency is no
way to be hidden. Under such circumstances, the burst latency is always greater than
the compute latency. Examine Figure E-5.

Figure E-5 Memory Throughput Bound Pipeline

Execution cycles

\

|

Front-Side Bus

Execution pipeline

i+pid+1 i+pid+2 i+pid+3

The following relationship calculates the prefetch scheduling distance (or prefetch
iteration distance) for the case when memory throughput latency is greater than the
compute latency.

psd = [it W =1+ F—w =1 =T
Ti T

Apparently, the iteration latency is dominant by the memory throughput and you
cannot do much about it. Typically, data copy from one space to another space, for
example, graphics driver moving data from writeback memory to you cannot do much

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

about it. Typically, data copy from one space to another space, for example, graphics
driver moving data from writeback memory to write-combining memory, belongs to
this category, where performance advantage from prefetch instructions will be
marginal .

Example

Asan example of the previous cases consider the following conditions for computation
latency and the memory throughput latencies. Assume T, = 18 and Ty, = 8 (in front side
bus cycles).

. T8
il 7.2 26 = psd =| —— W=|

. 15 +8
if26=T>8=2% psd =[=]h?

H
il T. 53=b|r:"r;.l':|+"|_ =4
%1

Now for the case T, =18, T, =8 (2 cache lines are needed per iteration) examine the
following graph. Consider the graph of accesses per iteration in example 1, Figure E-6.

intel. £10

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Figure E-6 Accesses per Iteration, Example 1

2 cacha lirma scosmiad Raralion
e] m: i |
T.2Tr+d i I+fuz>T.>T I.zr

=
L

._...-' 5
= SECRT BT S
pasTEey Do bml 3 N
i crargREs Boarad il iy dad
..

Te i el e

=l b B ol e rwis e
L)
]
1
[}
Heoim UPL cheks

The prefetch scheduling distance is a step function of T, the computation latency. The
steady stateiteration latency (il) is either memory-bound or compute-bound depending
on T, if prefetches are scheduled effectively.

The graph in example 2 of accesses per iteration in Figure E-7 shows the results for
prefetching multiple cache lines per iteration. The cases shown are for 2, 4, and 6
cache lines per iteration, resulting in differing burst latencies. (T,=18, T, =8, 16, 24).

E-11

Intel Pentium 4 Processor Optimization Mathematics of Prefetch Scheduling Distance E

Figure E-7 Accesses per Iteration, Example 2

psd for different number of cache lines prefetched per iteration

—e—2lines
m 4lines

A 6lines|

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

Tc (in FSB clocks)

In redlity, the front-side bus (FSB) pipelining depth is limited, that is, only four
transactions are allowed at atime in the Pentium 11 and Pentium 4 processors. Hence a
transaction bubble or gap, Ty, (gap due to idle bus of imperfect front side bus
pipelining) will be observed on FSB activities. This leads to consideration of the
transaction gap in computing the prefetch scheduling distance. The transaction gap, Ty,
must be factored into the burst cycles, Ty, for the calculation of prefetch scheduling
distance.

The following relationship shows computation of the transaction gap.
Te=maxiTi—c=(n-=1)0)

where T, is the memory |eadoff latency, c isthe number of chunks per cache lineand n
isthe FSB pipelining depth.

E-12

| ndex

A

absol ute difference of signed numbers, 4-22
absol ute difference of unsigned numbers, 4-22
absolute value, 4-24

accesses per iteration, E-11, E-12

algorithm to avoid changing the rounding mode, 2-28,

2-31, 2-47

aligned ebp-based frame, D-4, D-6
aligned esp-based stack frames, D-4
Alignment, 2-22

stack, 2-34

coe, 2-40
AoS format, 3-26
application performance tools, A-1
Arrays, Aligning, 2-31
assembly coach, A-18
assembly coach techniques, A-18
automatic processor dispatch support, A-3
automatic vectorization, 3-15, 3-16

B

Branch Prediction, 2-12
branch prediction, 2-4

C

cache blocking techniques, 6-28
cache hierarchy, A-11
cachelevel, 6-4

cache management
simple memory copy, 6-38
video decoder, 6-38
video encoder, 6-37

cache performance, A-11
calculating insertion for scheduling distance, E-3
call graph profiling, A-12
Call Graph view, A-12
call information, A-14
changing the rounding mode, 2-47
checking for MM X technology support, 3-2
checking for Streaming SIMD Extensions support, 3-3
child function, A-14
classes (C/C++), 3-14
clipping to an arbitrary signed range, 4-24
clipping to an arbitrary unsigned range, 4-27
code coach, A-15, A-17
code optimization advice, A-15, A-18
code optimization options, A-3
Code segment, Dataiin, 2-37
coding methodologies, 3-10
coding techniques, 3-10
absolute difference of signed numbers, 4-22
absolute difference of unsigned numbers, 4-22
absolute value, 4-24
clipping to an arbitrary signed range, 4-24
clipping to an arbitrary unsigned range, 4-27
generating constants, 4-20
interleaved pack with saturation, 4-7

interleaved pack without saturation, 4-9
non-interleaved unpack, 4-10

intel.

Index-1

Intel Pentium 4 Processor Optimization Index

coding techniques (cont.) debug symbols, A-14
signed unpack, 4-6 decoupled memory, E-6
simplified clipping to an arbitrary signed range, 4-26 divide instructions, 2-55

unsigned unpack, 4-5
coherent requests, 6-11

command-line options, A-2 E
automatic processor dispatch support, A-3 EBS. See event-based sampling
floating-point arithmetic precision, A-5 eliminating branches, 2-12, 2-14

inline expansion of library functions, A-5

loop unrolling, A-4 EMMSiinstruction, 4-2, 4-3, 4-4

rounding control, A-5 event-based sampling, A-9
targeting a processor, A-3 extract word instruction, 4-12
vectorizer switch, A-4
comparing register values, 2-58 F
compiler intrinsics
mm load, 6-2, 6-37 fist instruction, 2-46
:mm:prefetch, 6-2, 6-37 fldew instruction, 2-46
compiler intrisics, _mm_stream, 6-2, 6-37 floating-point applications, 2-41
compiler plug-in, A-2 floating-point arithmetic precision options, A-5
compiler-supported alignment, 3-21 floating-point code
complex instructions, 2-53 improving parallelism, 2-49

loop unrolling, 2-20
memory access stall information, 2-29
memory operands, 2-51

computation latency, E-7
computation-intensive code, 3-9

compute bound, E-7, E-8 operations with integer operands, 2-52
converting code to MMX technology, 3-6 optimizing, 2-41

counters, A-11 transcendental functions, 2-52

CPUID instruction, 3-2 floating-point operations with integer operands, 2-52

floating-point stalls, 2-51

D flow dependency, E-7
flush to zero, 5-19

Data, Code segment and, 2-37 FXCH instruction, 2-51

data alignment, 3-16

data arrangement, 5-4

data copy, E-10 G
data deswizzling, 5-11, 5-12 general optimization techniques, 2-1
Data structures branch prediction, 2-12

Access pattern versus alignment, 2-33 static prediction, 2-15

Aligning, 2-31 generating constants, 4-20

data swizzling, 5-7
data swizzling using intrinsics, 5-9

Intel ® Index-2

Intel Pentium 4 Processor Optimization

Index

H

horizontal computations, 5-15
hotspots, 3-8, A-15, A-16

increasing bandwidth of memory fills, 4-34
increasing bandwidth of video fills, 4-34
indirect branch, 2-20

inline assembly, 4-5

inline expansion of library functions option, A-5
inlined assembly blocks, D-9

inlined-asm, 3-12

insert word instruction, 4-13

instruction scheduling, 2-36, 4-36
instruction selection, 2-52

integer and floating-point multiply, 2-55
integer divide, 2-55

integer-intensive application, 4-1

Intel® Performance Library Suite, A-1
interleaved pack with saturation, 4-7
interleaved pack without saturation, 4-9
interprocedural optimization, A-6

IPO. Seeinterprocedural optimization

L

large load stalls, 2-29
latency, 2-51, 6-3
leainstruction, 2-53

loading and storing to and from the same DRAM page,

4-35
loop blocking, 3-30
loop unralling, 2-20
loop unralling option, A-4, A-5

M

memory bank conflicts, 6-3
memory O=optimization U=using P=prefetch, 6-16
memory operands, 2-51
memory optimization, 4-31
memory optimizations
loading and storing to and from the same DRAM
page, 4-35
partial memory accesses, 4-32
using aligned stores, 4-35
memory performance, 3-23
memory reference instructions, 2-57
memory throughput bound, E-9
minimizing prefetches number, 6-23
misaligned data access, 3-17
misalignment in the FIR filter, 3-18
move byte mask to integer, 4-15
MOVQ Instruction, 4-35

N

new SIMD-integer instructions
extract word, 4-12
insert word, 4-13
move byte mask to integer, 4-15
packed average byte or word), 4-29
packed multiply high unsigned, 4-28
packed shuffle word, 4-17
packed signed integer word maximum, 4-28
packed sum of absolute differences, 4-28
Newton-Raphson iteration, 5-2
non-coherent requests, 6-11
non-interleaved unpack, 4-10
non-temporal stores, 6-36
NOPs, 2-64
To align ingtructions, 2-64
XCHG EAX,EAX
Specid hardware support for, 2-65

numeric exceptions
flush to zero, 5-19

intel.

Index-3

Intel Pentium 4 Processor Optimization

Index

O

optimizing cache utilization
cache management, 6-37
examples, 6-13
non-temporal store instructions, 6-8
prefetch and load, 6-7
prefetch Instructions, 6-6
prefetching, 6-5
SFENCE instruction, 6-13, 6-14
streaming, non-temporal stores, 6-8
optimizing floating-point applications
copying, shuffling, 5-15
data arrangement, 5-4
data deswizzling, 5-11
data swizzling using intrinsics, 5-9
horizontal ADD, 5-16
planning considerations, 5-2
rules and suggestions, 5-1
scalar code, 5-3
vertical versus horizontal computation, 5-4

optimizing floating-point code, 2-41

P

pack instruction, 4-9

pack instructions, 4-7

packed average byte or word), 4-29
packed multiply high unsigned, 4-28
packed shuffle word, 4-17

packed signed integer word maximum, 4-28
packed sum of absolute differences, 4-28
pairing, A-14

paralelism, 3-10, E-6

parameter alignment, D-4

parent function, A-14

partial memory accesses, 4-32

PAVGB instruction, 4-29

PAVGW ingtruction, 4-29

penalties, A-14

performance counter events, A-9

Performance Library Suite, A-19
architecture, A-20
Image Processing Library, A-19
Math Kernel Library, A-19
optimizations, A-21
Recognition Primitives Library, A-19
Signal Processing Library, A-19
PEXTRW instruction, 4-12
PGO. See profile-guided optimization
PINSRW instruction, 4-13
PLS. See Performance Library Suite
PMINSW instruction, 4-28
PMINUB instruction, 4-28
PMOVMSKB ingtruction, 4-15
PMULHUW instruction, 4-28
predictable memory access patterns, 6-5
prefetch and cacheability Instructions, 6-3
prefetch and loadilnstructions, 6-7
prefetch concatenation, 6-21, 6-22
prefetch instruction, 6-1
prefetch instruction considerations, 6-19
cache blocking techniques, 6-28
concatenation, 6-21
minimizing prefetches number, 6-23
no preloading or prefetch, E-5
prefetch scheduling distance, E-4
scheduling distance, 6-19
single-pass execution, 6-3, 6-33
spread prefetch with computatin instructions, 6-26
strip-mining, 6-31
prefetch instructions, 6-5
prefetch scheduling distance, 6-19, E-5, E-7, E-9
prefetch use
predictable memory access patterns, 6-5
time-consuming innermost loops, 6-5

prefetching, A-4

prefetching concept, 6-4
prefetchntainstruction, 6-30
profile-guided optimization, A-6
prolog sequences, 2-60

intel.

Index-4

Intel Pentium 4 Processor Optimization

Index

PSADBW instruction, 4-28
PSHUF instruction, 4-17

R-S
reciprocal instructions, 5-2
rounding control option, A-5
sampling, A-7

event-based, A-9

time-based, A-8
Self-modifying code, 2-36
SFENCE Instruction, 6-13, 6-14
signed unpack, 4-6
SIMD integer code, 4-2
SIMD-floating-point code, 5-1
simple memory copy, 6-38
simplified 3D geometry pipeline, 6-17
simplified clipping to an arbitrary signed range, 4-26
single-pass versus multi-pass execution, 6-33
SoA format, 3-26
software write-combining, 6-36
spread prefetch, 6-27
Spreadsheet, A-12
Stack Alignment

Example of dynamic, 2-34
Stack alignment, 2-34
stack aignment, 3-19
stack frame, D-1
stack frame optimization, D-9
static assembly andyzer, A-15
static branch prediction algorithm, 2-16
static code analysis, A-14
static prediction, 2-15
static prediction algorithm, 2-15
streaming store, 6-38
streaming stores

coherent requests, 6-11
non-coherent requests, 6-11

strip mining, 3-28, 3-30
strip-mining, 6-31, 6-32

Structs, Aligning, 2-31

swizzling data. See data swizzling.

T
targeting a processor option, A-3
TBS. Seetime-based sampling
time-based sampling, A-7, A-8
time-consuming innermost loops, 6-5
TLB. See transaction lookaside buffer
transaction lookaside buffer, 6-39
transcendental functions, 2-52
transfer latency, E-7, E-8

tuning application, A-7

U

unpack instructions, 4-10
unsigned unpack, 4-5
using MM X code for copy or shuffling functions, 5-15

Vv

vector classlibrary, 3-15

vectorization, 3-10

vectorized code, 3-15

vectorizer switch options, A-4

vertical versus horizontal computation, 5-4
View by Call Sites, A-12, A-14

VTune analyzer, 3-8, A-1

VTune™ Performance Analyzer, 3-8

w

write-combining buffer, 6-36
write-combining memory, 6-36

intel.

Index-5

	Intel ® Pentium ® 4 Processor Optimization
	Contents
	Introduction
	Tuning Your Application
	About This Manual
	Related Documentation
	Notational Conventions

	1 Intel® Pentium® 4 Processor Overview
	SIMD Technology and Streaming SIMD Extensions 2
	Summary of SIMD Technologies
	MMX Technology
	Streaming SIMD Extensions
	Streaming SIMD Extensions 2

	Intel® NetBurst™ Micro-architecture
	The Design Considerations of the Intel NetBurst Micro-architecture
	Overview of the Intel NetBurst Micro-architecture Pipeline
	The Front End
	The Out-of-order Core
	Retirement

	Front End Pipeline Detail
	Prefetching
	Decoder
	Execution Trace Cache
	Branch Prediction
	Branch Hints

	Execution Core Detail
	Instruction Latency and Throughput
	Execution Units and Issue Ports
	Caches
	Data Prefetch
	Loads and Stores
	Store Forwarding

	2 General Optimization Guidelines
	Tuning to Achieve Optimum Performance
	Tuning to Prevent Known Coding Pitfalls
	General Practices and Coding Guidelines
	Use Available Performance Tools
	Optimize Performance Across Processor Generations
	Optimize Branch Predictability
	Optimize Memory Access
	Optimize Floating-point Performance
	Optimize Instruction Selection
	Optimize Instruction Scheduling
	Enable Vectorization

	Coding Rules, Suggestions and Tuning Hints
	Performance Tools
	Intel® C++ Compiler
	General Compiler Recommendations
	VTune™ Performance Analyzer

	Processor Generations Perspective
	The CPUID Dispatch Strategy and Compatible Code Strategy

	Branch Prediction
	Eliminating Branches
	Spin-Wait and Idle Loops
	Static Prediction
	Branch Hints
	Inlining, Calls and Returns
	Branch Type Selection
	Loop Unrolling
	Compiler Support for Branch Prediction

	Memory Accesses
	Alignment
	Store Forwarding
	Store-forwarding Restriction on Size and Alignment
	Store-forwarding Restriction on Data Availability

	Data Layout Optimizations
	Stack Alignment
	Aliasing Cases
	Mixing Code and Data
	Write Combining
	Locality Enhancement
	Prefetching
	Hardware Instruction Fetching
	Software and Hardware Cache Line Fetching

	Cacheability instructions
	Code

	Improving the Performance of Floating-point Applications
	Guidelines for Optimizing Floating-point Code
	Floating-point Modes and Exceptions
	Floating-point Exceptions
	Floating-point Modes

	Improving Parallelism and the Use of FXCH
	x87 vs. SIMD Floating-point Trade-offs
	Memory Operands
	Floating-Point Stalls
	x87 Floating-point Operations with Integer Operands
	x87 Floating-point Comparison Instructions
	Transcendental Functions

	Instruction Selection
	Complex Instructions
	Use of the lea Instruction
	Use of the inc and dec Instructions
	Use of the shift and rotate Instructions
	Integer and Floating-point Multiply
	Integer Divide
	Operand Sizes
	Address Calculations
	Clearing Registers
	Compares
	Floating Point/SIMD Operands
	Prolog Sequences
	Code Sequences that Operate on Memory Operands

	Instruction Scheduling
	Latencies and Resource Constraints
	Spill Scheduling
	Scheduling Rules for the Pentium 4 Processor Decoder

	Vectorization
	Miscellaneous
	NOPs

	Summary of Rules and Suggestions
	User/Source Coding Rules
	Assembly/Compiler Coding Rules
	Tuning Suggestions

	3 Coding for SIMD Architectures
	Checking for Processor Support of SIMD Technologies
	Checking for MMX Technology Support
	Checking for Streaming SIMD Extensions Support
	Checking for Streaming SIMD Extensions 2 Support

	Considerations for Code Conversion to SIMD Programming
	Identifying Hot Spots
	Determine If Code Benefits by Conversion to SIMD Execution

	Coding Techniques
	Coding Methodologies
	Assembly
	Intrinsics
	Classes
	Automatic Vectorization

	Stack and Data Alignment
	Alignment and Contiguity of Data Access Patterns
	Using Padding to Align Data
	Using Arrays to Make Data Contiguous

	Stack Alignment For 128-bit SIMD Technologies
	Data Alignment for MMX Technology
	Data Alignment for 128-bit data
	Compiler-Supported Alignment

	Improving Memory Utilization
	Data Structure Layout
	Strip Mining
	Loop Blocking

	Instruction Selection
	Tuning the Final Application

	4 Optimizing for SIMD Integer Applications
	General Rules on SIMD Integer Code
	Using SIMD Integer with x87 Floating-point
	Using the EMMS Instruction
	Guidelines for Using EMMS Instruction

	Data Alignment
	Data Movement Coding Techniques
	Unsigned Unpack
	Signed Unpack
	Interleaved Pack with Saturation
	Interleaved Pack without Saturation
	Non-Interleaved Unpack
	Extract Word
	Insert Word
	Move Byte Mask to Integer
	Packed Shuffle Word for 64-bit Registers
	Packed Shuffle Word for 128-bit Registers
	Unpacking/interleaving 64-bit Data in 128-bit Registers
	Data Movement
	Conversion Instructions

	Generating Constants
	Building Blocks
	Absolute Difference of Unsigned Numbers
	Absolute Difference of Signed Numbers
	Absolute Value
	Clipping to an Arbitrary Range [high, low]
	Highly Efficient Clipping
	Clipping to an Arbitrary Unsigned Range [high, low]

	Packed Max/Min of Signed Word and Unsigned Byte
	Signed Word
	Unsigned Byte

	Packed Multiply High Unsigned
	Packed Sum of Absolute Differences
	Packed Average (Byte/Word)
	Complex Multiply by a Constant
	Packed 32*32 Multiply
	Packed 64-bit Add/Subtract
	128-bit Shifts

	Memory Optimizations
	Partial Memory Accesses
	Increasing Bandwidth of Memory Fills and Video Fills
	Increasing Memory Bandwidth Using the MOVDQ Instruction
	Increasing Memory Bandwidth by Loading and Storing to and from the Same DRAM Page
	Increasing UC and WC Store Bandwidth by Using Aligned Stores

	Converting from 64-bit to 128-bit SIMD Integer

	5 Optimizing for SIMD Floating-point Applications
	General Rules for SIMD Floating-point Code
	Planning Considerations
	Detecting SIMD Floating-point Support
	Using SIMD Floating-point with x87 Floating-point
	Scalar Floating-point Code
	Data Alignment
	Data Arrangement
	Vertical versus Horizontal Computation
	Data Swizzling
	Data Deswizzling
	Using MMX Technology Code for Copy or Shuffling Functions
	Horizontal ADD

	Use of cvttps2pi/cvttss2si Instructions
	Flush-to-Zero Mode

	6 Optimizing Cache Usage for Intel Pentium 4 Processors
	General Prefetch Coding Guidelines
	Prefetch and Cacheability Instructions
	Prefetch
	Software Data Prefetch
	Hardware Data Prefetch
	The Prefetch Instructions – Pentium 4 Processor Implementation
	Prefetch and Load Instructions

	Cacheability Control
	The Non-temporal Store Instructions
	Fencing
	Streaming Non-temporal Stores
	Memory Type and Non-temporal Stores
	Write-Combining

	Streaming Store Usage Models
	Coherent Requests
	Non-coherent requests

	Streaming Store Instruction Descriptions
	The fence Instructions
	The sfence Instruction
	The lfence Instruction
	The mfence Instruction

	The clflush Instruction

	Memory Optimization Using Prefetch
	Software-controlled Prefetch
	Hardware Prefetch
	Example of Latency Hiding with S/W Prefetch Instruction
	Prefetching Usage Checklist
	Prefetch Scheduling Distance
	Prefetch Concatenation
	Minimize Number of Prefetches
	Mix Prefetch with Computation Instructions
	Prefetch and Cache Blocking Techniques
	Single-pass versus Multi-pass Execution

	Memory Optimization using Non-Temporal Stores
	Non-temporal Stores and Software Write-Combining
	Cache Management
	Video Encoder
	Video Decoder
	Conclusions from Video Encoder and Decoder Implementation
	Using Prefetch and Streaming-store for a Simple Memory Copy
	TLB Priming
	Optimizing the 8-byte Memory Copy

	A Application Performance Tools
	Intel Compilers
	Code Optimization Options
	Targeting a Processor (-Gn)
	Automatic Processor Dispatch Support (-Qx[extensions] and -Qax[extensions])

	Vectorizer Switch Options
	Prefetching
	Loop Unrolling
	Multithreading with OpenMP

	Inline Expansion of Library Functions (-Oi, -Oi-)
	Floating-point Arithmetic Precision (-Op, -Op-, -Qprec, -Qprec_div, -Qpc, -Qlong_double)
	Rounding Control Option (-Qrcd)
	Interprocedural and Profile-Guided Optimizations
	Interprocedural Optimization (IPO)
	Profile-Guided Optimization (PGO)

	VTune™ Performance Analyzer
	Using Sampling Analysis for Optimization
	Time-based Sampling
	Event-based Sampling
	Sampling Performance Counter Events

	Call Graph Profiling
	Call Graph Window

	Static Code Analysis
	Static Assembly Analysis
	Code Coach Optimizations
	Assembly Coach Optimization Techniques

	Intel® Performance Library Suite
	Benefits Summary
	Libraries Architecture
	Optimizations with the Intel Performance Library Suite

	Enhanced Debugger (EDB)
	Intel® Architecture Performance Training Center

	B Intel Pentium 4 Processor Performance Metrics
	Pentium 4 Processor-Specific Terminology
	Bogus, Non-bogus, Retire
	Bus Ratio
	Replay
	Assist
	Tagging

	Metrics Descriptions and Categories
	Performance Metrics and Tagging Mechanisms
	Tags for replay_event
	Tags for front_end_event
	Tags for execution_event

	Counting Clocks

	C IA-32 Instruction Latency and Throughput
	Overview
	Definitions
	Latency and Throughput
	Latency and Throughput with Register Operands
	Table Footnotes

	Latency and Throughput with Memory Operands

	D Stack Alignment
	Stack Frames
	Aligned esp-Based Stack Frames
	Aligned ebp-Based Stack Frames
	Stack Frame Optimizations

	Inlined Assembly and ebx

	E Mathematics of Prefetch Scheduling Distance
	Simplified Equation
	Mathematical Model for PSD
	No Preloading or Prefetch
	Compute Bound (Case:Tc >= Tl + Tb)
	Compute Bound (Case: Tl + Tb > Tc > Tb)
	Memory Throughput Bound (Case: Tb >= Tc)
	Example

	Index

