
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 38: Dynamic Types

4 May 01

CS 412/413 Spring '01 – Andrew MyersLecture 38 2

Static vs. dynamic typing
• This lecture: how to handle incomplete

information about run-time type

• Arises even in statically-typed OO
languages because only supertype is
known (e.g. casts and instanceof)

CS 412/413 Spring '01 – Andrew MyersLecture 38 3

Type safety

Strongly typed Not strongly typed

Statically typed

Not statically typed

Java

ML

Modula-3

Pascal C

Scheme
PostScript

Smalltalk
SELF
CLOS

FORTH
assembly code

C++

Iota
Iota+

CS 412/413 Spring '01 – Andrew MyersLecture 38 4

Dynamically typed languages
• Scheme, CLOS, Dylan, PostScript:

Variables do not have a declared type –
can contain any kind of value

• Operations can be invoked without
knowing type of value

• Strong typing: must check value to make
sure it has a type supporting the operation

• Must be able to figure out the run-time
type of every value!

CS 412/413 Spring '01 – Andrew MyersLecture 38 5

Unsupported object operations
• Object operations=method invocations

• Need to check for unsupported methods

• Option 1: give every method unique index

• Option 2: Hash table implementation of DV
automatically handles unsupported methods

• Option 3: Use standard
DV but check method
identity

• Field accesses: not
a problem for this,
treat as methods
for other variables

class
DV

CS 412/413 Spring '01 – Andrew MyersLecture 38 6

Primitive types
x = 48463751374;
x = new Foo;

• If variables are untyped, how to know x is
actually an int (or not)?

• Must change representation of integers!
(booleans, characters, floats, etc.)
– Box everything into an object?

– Use two words per value?

2

CS 412/413 Spring '01 – Andrew MyersLecture 38 7

Tag bits
• Another approach: reserve 1-3 bits in each word

to identify primitive values (handy for GC too)

• Advantage: variable in a single word

• Disadvantage: extra overhead, smaller range of
representable values, pointers

12 = 00001100 → 001100 00
‘\f’ = 00001100 → 001100 01
new Foo = 00110000 → 001100 11

CS 412/413 Spring '01 – Andrew MyersLecture 38 8

Tag bit tricks
• Integers: use zero bit pattern so

integer n represented by number 4n
– Adding two integers a + b: just add tagged

representation!

– Multiply: a * b → a*(b shr 2)

• Pointers: represent a pointer to an
object at address p by pʹ = p+3 (don’t
need to be able to address every byte!)

[p+k] → [pʹ+k-3]

new Foo = 00110000 → 001100 11

CS 412/413 Spring '01 – Andrew MyersLecture 38 9

Dynamic type discrimination
• Even statically typed languages need

to find type of object at run time
class Number {

boolean equals(Object x) {
if (x instanceof Number) {

return equals((Number)x);
} else return false;

}
}
• How to implement dynamic type

discrimination: instanceof, dynamic cast?
CS 412/413 Spring '01 – Andrew MyersLecture 38 10

Using DV
• All objects of a class share same DV

• DV identifies which class it comes from

• Idea: implement instanceof as comparison of
DV pointer

• x instanceof C ⇒
x.dv == C__DV

• Complete?

class
DV

CS 412/413 Spring '01 – Andrew MyersLecture 38 11

Hashing DV pointer
• Problem to solve: given DV pointer, type T,

determine if class(DV) ≤ T
• T may be a class or an interface; consider

class with DV2

• Use pre-initialized global hash table to look
up type relationships: Hash DV, DV2 to look
up either true or false

• Construct pseudo-DV’s for interfaces so they
can be entered in hash table too

• Can update table dynamically (for caching or
dynamic loading)

CS 412/413 Spring '01 – Andrew MyersLecture 38 12

Class indices
• If only single inheritance, can implement

instanceof as range check

• Traverse class hierarchy depth-first, number
classes

• All classes that are subclasses of Cn have indices
in a contiguous range

C4

C2

C1 C3

C6

C5 C7

3

CS 412/413 Spring '01 – Andrew MyersLecture 38 13

Class indices
• Class index is stored in the DV
x instanceof C
⇒ x.dv.class ≤ C__index_max &&

x.dv.class ≥ C__index_min
⇒ (x.dv.class — C__index_min) ≤u

(C__index_max — C__index_min)

• Limitation: can’t add new classes
to system without rewriting code

CS 412/413 Spring '01 – Andrew MyersLecture 38 14

Run-time type information
• Run-time representation of classes

discussed so far: dispatch vectors and
method code

• Other useful information: types of
fields, layout in memory, supertype
relationships

• Useful for: GC, persistence, dynamic
code generation (e.g., RPC stubs, Java
Beans), dynamic type discrimination

CS 412/413 Spring '01 – Andrew MyersLecture 38 15

Meta-objects
• How to store dynamic type information? Idea

(Smalltalk): use ordinary objects—meta-objects

• For every class, introduce an object to represent it

• Class object contains information about class:
methods, fields, list of supertypes

• Can use class object to do object dispatch (slowly)

• Class DV contains pointer to class object; can find
any object’s class object

Object o; Class c = o.getClass();

CS 412/413 Spring '01 – Andrew MyersLecture 38 16

Class Class
• If class objects are ordinary objects, what is the class of a

class object?
class Class {

Method[] getMethods();
Field[] getFields ();
Class getSuperclass();
Class[] getInterfaces();

}
class Method {

Class returnType();
Class[] getParameterTypes();
Object invoke(Object receiver, Object[] args);

}
• Set of methods supported by meta-objects:

meta-object protocol (MOP)

CS 412/413 Spring '01 – Andrew MyersLecture 38 17

Infinite regression?

object of
class Foo

DV for
class Foo

class object
for Foo

DV for
class Class

Class object
for Class

?

CS 412/413 Spring '01 – Andrew MyersLecture 38 18

Dynamic code generation
• All information (meta-objects) compiler

needs is in running application – can use
compiler in the application!

• Application can use compiler as library to
generate type-safe code on the fly
– from source code

– from partially compiled code (AST, abstract
assembly)

• Example: function plotting program

• Convenient if compiler is written in the
language it compiles (e.g., Java)

4

CS 412/413 Spring '01 – Andrew MyersLecture 38 19

Escaping static limitations
Compiler techniques can be applied to very

dynamic systems as well as to statically-
typed languages
– untyped languages

– run-time type discrimination

– primitive values treated as objects

– meta-objects expose information about type
system as first-class values

– dynamic code generation

CS 412/413 Spring '01 – Andrew MyersLecture 38 20

Java compilation model
Java source code

javac (sun.tools.javac.Main(o, s))

Java bytecode

bytecode verifier

Just-In-Time
(JIT) compiler

Java
interpreter

native code

stack
machine

instructions

type
annotations

meta-objects

CS 412/413 Spring '01 – Andrew MyersLecture 38 21

Verification
• Java security depends on

– access only through public/protected methods

– hidden private variables

– unforgeable references to objects (capabilities)

• If Java program is not strongly typed, security of
machine can be compromised!

• Java bytecode verifier checks Java bytecode to
ensure strong typing: typed intermediate
language

• Java Virtual Machine interpreter runs verified
bytecode quickly, avoids run-time checks

CS 412/413 Spring '01 – Andrew MyersLecture 38 22

JVM bytecode
• stack-machine intermediate code

– add, sub, mul, rem, div, … : arithmetic
– dup, swap, pop, … : stack ops (untyped)

• also has local registers/temporaries
– load, store (untyped)

• built-in object operations
– invokevirtual, invokestatic, getfield, putfield, …
– types of methods, fields are declared

• control flow
– ifeq, goto, ifne, … : conditional branch

• How to show that code is type-safe?
(efficiently!)

CS 412/413 Spring '01 – Andrew MyersLecture 38 23

Type inference
• Type-checking bytecode: need to know

– type of every stack entry
– type of every local at every instruction
– Not present in bytecode file: inferred

• Inference: Start from
– known argument, return types to method
– typed object calls inside method

• Use forward data-flow analysis to propagate
types to all bytecode instructions

• Data-flow value is type of every stack entry,
type of every local

• Meet is pointwise join in type hierarchy
CS 412/413 Spring '01 – Andrew MyersLecture 38 24

Example
Data-flow value = (T1, T2, …), [0: T1 ,0א: T1א, …]

swap

stack types local types

(T1, T2, …), [0: T1 ,0א: Tא 1, …]

(T2, T1, …), [0: Tא 0, 1: Tא 1, …]

load i

(T1, T2, …), [0: Tא 0, …, i: Tא i, …]

(Tא i, T1,T2, …), [0: Tא 0, …, i: Tא i, …]

(…), […, i: Ti, …] (…), […, i: Tא i, …]

(…), […, i: Ti � Tא i, …]
Object � int = ?

flow
functions

combining operator �

5

CS 412/413 Spring '01 – Andrew MyersLecture 38 25

JIT compilers
• Particularly widely available back end(s) with

IR = JVM bytecode
• Code generation by converting stack machine

code into quadruples
• Inferred types ⇒ better code
• Compilation must be done lazily (on-the-fly):

not allowed to load .class files until used
• Generating code quickly is essential → hard

to generate good code (but new JITs do it)
• HotSpot: Sun JIT. High-quality profile-driven

optimization (esp. inlining and
specialization), applied to hot code

