
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 34: Linking and Loading
25 Apr 01

CS 412/413 Spring '01 -- Andrew MyersLecture 34 2

Outline
• Static linking

– Object files
– Libraries
– Shared libraries
– Relocatable code

• Dynamic linking
– explicit vs. implicit linking
– dynamically linked libraries/dynamic shared

objects

CS 412/413 Spring '01 -- Andrew MyersLecture 34 3

Object files
• Output of compiler is an

object file
– not executable

– may refer to external
symbols (variables,
functions, etc.) whose
definition is not known.

• Linker joins together
object files, resolves
external references

source code

object code

executable
image

source code

object code

compiler

linker

CS 412/413 Spring '01 -- Andrew MyersLecture 34 4

Unresolved references

extern int abs(int x);
…
y = y + abs(x);

PUSH ecx
CALL _abs
ADD ebx, eax

9A 00

51

03 D8

00 00 00
to be filled in
by linker

source
code

assembly
code

object
code

CS 412/413 Spring '01 -- Andrew MyersLecture 34 5

Object file structure

text section: unresolved
machine code

symbol table
(maps identifiers to

machine code locations)

relocation info

file header

initialized data

• Object file contains
various sections

• text section contains the
compiled code with some
patching needed

• For uninitialized data,
only need to know total
size of data segment

• Describes structure of text
and data sections

• Points to places in text
and data section that need
fix-up

CS 412/413 Spring '01 -- Andrew MyersLecture 34 6

Action of Linker

text1

sym1
rel1

init1

text2

sym2
rel3

init2

text3

sym3
rel3

init3

text3
text2
text1

init3
init2
init1

uninitialized
data

executable image
memory layout

object files

code
segment

data
segment

+peephole optimizations

2

CS 412/413 Spring '01 -- Andrew MyersLecture 34 7

Executable file structure
• Same as object file, but

code is ready to be
executed as-is

• Pages of code and data
brought in lazily from
text and data section as
needed: rapid start-up

• Text section shared
across processes

• Symbols allow debugging

text section: execution-
ready machine code

optional: symbol table

file header

initialized data

CS 412/413 Spring '01 -- Andrew MyersLecture 34 8

Executing programs
• Multiple copies of program share code (text),

have own data

• Data appears at same virtual address in every
process

notepad code

notepad data 1

notepad data 2

notepad data 3

notepad code
notepad data 1
notepad code
notepad data 2
notepad code
notepad data 3

code

heap data
static data

stack data

virtualphysical

CS 412/413 Spring '01 -- Andrew MyersLecture 34 9

Libraries
• Library : collection of object files

• Linker adds all object files necessary to
resolve undefined references in explicitly
named files

• Object files, libraries searched in user-
specified order for external references

Unix: ld main.o foo.o /usr/lib/X11.a /usr/lib/libc.a

NT: link main.obj foo.obj kernel32.lib user32.lib …

• Index over all object files in library for
rapid searching

CS 412/413 Spring '01 -- Andrew MyersLecture 34 10

Shared libraries
• Problem: libraries take up a lot of memory when

linked into many running applications

• Solution: shared libraries (e.g. DLLs)

ls

cat

emacs

xterm

libc

libc

libc

X11

libc

X11

libc

X11

Physical memory

CS 412/413 Spring '01 -- Andrew MyersLecture 34 11

Step 1: Jump tables
• Executable file refers to, does not contain library

code; library code loaded dynamically

• Library code found in separate shared library
file (similar to DLL); linking done against
import library that does not contain code

• Library compiled at fixed address, starts with
jump table to allow new versions; client code
jumps to jump table (indirection).

scanf: jmp real_scanf

call printf printf: jmp real_printf

putc: jmp real_putc

program: library:

CS 412/413 Spring '01 -- Andrew MyersLecture 34 12

Global tables
• Problem: shared libraries may depend on

external symbols (even symbols within the
shared library); different applications may have
different linkage:
ld -o prog1 main.o /usr/lib/libc.a
ld -o prog2 main.o mymalloc.o /usr/lib/libc.a

• If routine in libc.a calls malloc(), for prog1
should get standard version; for prog2, version
in mymalloc.o

• Calls to external symbols are made through
global tables unique to each program

3

CS 412/413 Spring '01 -- Andrew MyersLecture 34 13

Global tables

main.o

Shared lib (libc)

mymalloc.o:

printf:
malloc()

Global table
…
malloc_entry:

main.o

prog1 prog2

malloc()

malloc:

malloc()

Data segment:

CS 412/413 Spring '01 -- Andrew MyersLecture 34 14

Using global tables
• Global table contains entries for all external references

malloc(n) � push [ebp + n]
mov eax, [malloc_entry]
call eax ; indirect jump!

• Same-module references can still be used directly

• Global table entries (malloc_entry) placed in non-shared
memory locations so each program can have different
linkage

• Initialized by dynamic loader when program begins:
reads symbol tables, relocation info

CS 412/413 Spring '01 -- Andrew MyersLecture 34 15

Relocation
• Before widespread support for virtual memory,

code had to be relocatable (could not contain
fixed memory addresses)

• With virtual memory, all programs could start at
same address, could contain fixed addresses

• Problem with shared libraries (e.g., DLLs): if
allocated at fixed addresses, can collide in
virtual memory (code, data, global tables, …)
– Collision � code copied and explicitly relocated

• Back to relocatable code!

CS 412/413 Spring '01 -- Andrew MyersLecture 34 16

Dynamic shared objects
• Unix systems: Code is typically compiled

as a dynamic shared object (DSO):
relocatable shared library

• Shared libraries can be mapped to any
address in virtual memory—no copying!

• Questions:
– how to make code completely relocatable?

– what is the performance impact?

CS 412/413 Spring '01 -- Andrew MyersLecture 34 17

Relocation difficulties
• Can’t use absolute addresses (directly named

memory locations) anywhere:
– Not in calls to external functions

– Not for global variables in data segment

– Not even for global table entries

push [ebp + n]
mov eax, [malloc_entry] ; Oops!
call eax

• Not a problem: branch instructions, local calls.
Use relative addressing

CS 412/413 Spring '01 -- Andrew MyersLecture 34 18

Global tables
• Can put address of all globals into global table
• But…can’t put the global table at a fixed address: not

relocatable!

• Three approaches:
1. Pass global table address as an extra argument

(possibly in a register) : affects first-class functions
(next global table address stored in current GT)

2. Use address arithmetic on current program counter
(eip register) to find global table. Offset between eip
and global table is a link-time constant

3. Stick global table entries into the current object’s
dispatch vector : DV is the global table (only works
for methods, but otherwise the best)

4

CS 412/413 Spring '01 -- Andrew MyersLecture 34 19

Cost of DSOs
• Assume esi contains global table pointer (set-up

code at beginning of function)
• Call to function f:

call [esi + f_offset]

• Global variable accesses:
mov eax, [esi + v_offset]
mov ebx, [eax]

• Calling global functions ≈ calling methods
• Accessing global variables is more expensive

than accessing local variables
• Most computer benchmarks run w/o DSOs!

CS 412/413 Spring '01 -- Andrew MyersLecture 34 20

Module values return
• Let M be an external module, f a fcn in M

• When accessing M.f, go through global table:
mov eax, [si + f_offset]

• Looks just like the code to access a field f of a
record located at si…

• si refers to a module value!

• Dynamic loader creates module values as
program starts (actually creates multiple copies for various
using modules; si points to concatenated records for all modules
used by the current code’s module)

CS 412/413 Spring '01 -- Andrew MyersLecture 34 21

Link-time optimization
• When linking object files, linker provides

flags to allow peephole optimization of
inter-module references

• Unix: –non_shared link option means
application to get its own copy of library
code
– calls and global variables performed directly

(peephole opt.)

• Allows performance/functionality trade-off

call [esi + malloc_addr] call malloc

CS 412/413 Spring '01 -- Andrew MyersLecture 34 22

Dynamic linking
• Shared libraries (DLLs) and DSOs can be linked

dynamically into a running program

• Normal case: implicit linking. When setting up global
tables, shared libraries are automatically loaded if
necessary (even lazily), symbols looked up & global
tables created.

• Explicit dynamic linking: application can choose how
to extend its own functionality

– Unix: h = dlopen(filename) loads an object file
into some free memory (if necessary), allows query
of globals: p = dlsym(h, name)

– Windows: h = LoadLibrary(filename),
p = GetProcAddress(h, name)

CS 412/413 Spring '01 -- Andrew MyersLecture 34 23

Conclusions
• Shared libraries and DSOs allow efficient

memory use on a machine running many
different programs that share code

• Improves cache, TLB performance overall

• Hurts individual program performance by
adding indirections through global tables,
bloating code with extra instructions

• Important new functionality: dynamic extension
of program

• Peephole linker optimization can restore
performance, but with loss of functionality

