
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 33: Memory management

23 Apr 01

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 2

Administration

• Programming Assignment 5
due Friday

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 3

Schedule
Topics for remainder of course:
• Run-time support

– Garbage collection
– Linking and loading
– Meta-objects
– JITs and interpreters

• Advanced language support
– First-class functions
– Exceptions
– Parametric polymorphism

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 4

Outline
• Overview of memory management, garbage

collection techniques and impact on compiled
code:
– Storage heaps
– Mark and sweep garbage collection
– Reference counting GC
– Copying GC

• concurrent/incremental garbage collection

– Generational GC

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 5

Memory
Virtual memory

(per process)
Physical memory

Static data

Code

Heap

Stack

KernelAutomatic

Grows
automatically

Explicitly
allocated

(Unix: brk)

Page table/
TLB

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 6

Explicit Memory Management
• Unix (libc) interface:

void* malloc(long n) : allocate n bytes of storage
on the heap and return its address

void free(void *addr) : release storage allocated
by malloc at address addr

• User-level library manages heap, issues
brk calls when necessary

2

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 7

Freelists
• Blocks of unused memory stored in

freelist(s)
malloc: find usable block on freelist
free: put block onto head of freelist

Freelist pointer
• Simple, but…
• Fragmentation ruins the heap
• malloc may be slow!

heap

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 8

Buddy system
• Idea 1: freelists for different allocation

sizes
– malloc, free are O(1)

• Idea 2: freelist sizes are powers of two: 2,
4, 8, 16, …
– blocks subdivided recursively: each has buddy
– adjacent free blocks promoted to next freelist

• Trades external fragmentation for
internal fragmentation

• Wasted space: ~30%

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 9

Problem
• Java, Iota+, C++ have new operator that

allocates new memory (calls malloc)

• How do we get memory back when the object
is not needed any longer?

• C++: explicit garbage collection
– delete operator destroys object, allows reuse of its

memory (calls free) : programmer decides how to
collect garbage

– makes modular programming difficult—have to
know what code “owns” every object so that
objects are deleted exactly once

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 10

Automatic garbage collection
• Usually most complex part of the run-time

environment

• Want to delete objects automatically if
they won’t be used again: undecidable

• Conservative: delete only objects that
definitely won’t be used again

• Reachability: objects definitely won’t be
used again if there is no way to reach them
from root references that are always
accessible (globals, stack, registers)

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 11

Object graph
• Stack, registers are treated as the roots of the object

graph. Anything not reachable from roots is garbage
• How can non-reachable objects can be reclaimed

efficiently? Compiler can help

ax

bx

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 12

Mark and sweep collection
• Classic algorithm with two phases
• Phase 1: Mark all reachable objects

– start from roots and traverse graph forward
marking every object reached

• Phase 2: Sweep up the garbage
– Walk over all allocated objects and check for

marks
– Unmarked objects are reclaimed
– Marked objects have their marks cleared
– Optional: compact all live objects in heap

(need double indirection via object table)

3

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 13

Traversing the object graph

3

2

6

4

5

1

ax

bx

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 14

Implementing mark phase
• Mark and sweep generally implemented as

depth-first traversal of object graph

• Has natural recursive implementation

• What happens when we try to mark a long
linked list recursively?

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 15

Pointer reversal
• Idea: during DFS, each pointer only

followed once. Can reverse pointers after
following them -- no stack needed!
(Deutsch-Waite-Schorr alg.)

• Implication: objects are broken while
being traversed; all computation over
objects must be halted during mark phase
(oops)

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 16

Cost of mark and sweep
• Mark and sweep algorithm reads all

memory in use by program

• Run time proportional to total amount of
data (live and garbage)

• Can pause program for long periods!

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 17

Conservative Mark & Sweep
• Allocated storage contains both pointers and

non-pointers; integers may look like pointers

• Treating a pointer as a non-pointer: objects may
be garbage-collected even though they are still
reachable and in use

• Treating a non-pointer as a pointer: objects are
not garbage collected even though they are not
pointed to (safe)

• Conservative collection: assumes things are
pointers unless they can’t be; requires no
language support (works for C!)

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 18

Reference counting
• Old algorithm for automatic garbage

collection: associate with every object a
reference count that is the number of
incoming pointers

• When number of incoming pointers is
zero, object is unreachable: garbage

4

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 19

Reference counts
• Reference counting doesn’t detect cycles!

1 1

2

5

2

0 1 1

1 1

1

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 20

Performance problems
• Consider assignment x.f = y
• Without ref-counts: mov [tx + f_off], ty
• With ref-counts:

t1 = M[tx + f_off]; c = M[t1 + refcnt]; c = c - 1; M[t1
+ refcnt] = c; if (c == 0) goto L1 else goto L2; L1:
call release_Y_object(t1); L2: M[tx + f_off] = ty; c =
M[ty + refcnt]; c = c + 1; M[ty + refcnt] = c;

• Data-flow analysis can be used to avoid
unnecessary increments & decrements

• Can pause program, overrun stack!
• Result: reference counting not used much by

real language implementations

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 21

Copying collection
• Like mark & sweep: collects all garbage

• Basic idea: two memory heaps
– one heap in use by program

– other sits idle until GC requires it

• GC:
– copy all live objects from active heap (from-

space) to the other (to-space)

– dead objects discarded en masse

– heaps then switch roles

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 22

Copying collection (Cheney’s)
• Copying starts by moving all root objects from

from-space to to-space

• From space traversed breadth-first from roots,
objects encountered are copied to top of to-
space.

scan
next

from-space to-space

roots

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 23

Benefits of copying collection
• Once scan=next, all uncopied objects are

garbage. Root pointers (registers, stack) are
swung to point into to-space, making it active

• Good:
– Simple, no stack space needed
– Run time proportional to # live objects
– Automatically eliminates fragmentation by

compacting memory
– malloc(n) implemented as (top = top + n)

• Bad:
– Precise pointer information required
– Twice as much memory used

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 24

Baker’s Concurrent GC
• GC pauses avoided by doing GC incrementally;

collector & program run at same time
• Program only holds pointers to to-space
• On field fetch, if pointer to from-space, copy object

and fix pointer (extra fetch code: 20%)
• On swap, copy roots and fix stack/registers

scan
next

from-space to-space

roots

5

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 25

Generational GC
• Observation: if an object has been

reachable for a long time, it is likely to
remain so

• In long-running system, mark & sweep,
copying collection waste time, cache
scanning/copying older objects

• Approach: assign objects to different
generations G0, G1, G2,…

• Generation G0 contains newest objects,
most likely to become garbage (<10% live)

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 26

Generations
• Consider a two-generation system. G0 =

new objects, G1 = tenured objects

• New generation is scanned for garbage
much more often than tenured objects

• New objects eventually given tenure if
they last long enough

• Roots of garbage collection for collecting
G0 include all objects in G1 (as well as
stack, registers)

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 27

Remembered set
• How to avoid scanning all tenured objects?

• In practice, few tenured objects will point to new
objects; unusual for an object to point to a newer
object

• Can only happen if older object is modified long
after creation to point to new object

• Compiler inserts extra code on object field
pointer writes to catch modifications to older
objects—older objects are remembered set for
scanning during GC, tiny fraction of G1

CS 412/413 Spring '01 Lecture 33 -- Andrew Myers 28

Summary
• Garbage collection is an aspect of the program

environment with implications for compilation

• Important language feature for writing modular code

• Iota, Iota+: Boehm/Demers/Weiser collector
http://reality.sgi.com/boehm/gcdescr.html
– conservative: no compiler support needed

– generational: avoids touching lots of memory

– incremental: avoids long pauses

– true concurrent (multi-processor) extension exists

• GC is here to stay! (thanks to Java)

