

Last time

Dataflow analysis framework:

1. Lattice of dataflow information values L with order \sqsubseteq, top T
2. Monotonic flow functions $\mathrm{F}_{\mathrm{n}}: \mathrm{L} \rightarrow \mathrm{L}$
3. Meet (GLB) operator \sqcap on L

Secture 29 CS 412/413 Spring'01-. Andrew Myers

Other analyses

- Live variables, reaching definitions

$$
\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\operatorname{gen}[\mathrm{n}] \cup(1-\operatorname{kill}[\mathrm{n}]), \quad \quad \quad=\cup
$$

- Available expressions

$$
\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{l}-\operatorname{kill}[\mathrm{n}]), \quad \quad \quad \mathrm{C}=\mathrm{n}
$$

- Do they terminate?
- Compute MOP solutions?

Summary

- Analyses for standard optimizations fit into dataflow analysis framework
- Iterative analysis finds solution if flow function monotonic in \sqsubseteq, combining function \sqcap is GLB of lower semilattice
- Solution is MOP if distribution condition $\prod_{\mathrm{i}} \mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}\left(\Pi_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)$ holds

"classic" constant propagation

- Idea: propagate and fold integer constants in one pass

$$
\begin{aligned}
& \mathrm{x}=1 ; \\
& \mathrm{y}=5+\mathrm{x} ; \\
& \mathrm{z}=\mathrm{y}^{*} \mathrm{y} ;
\end{aligned} \quad \Rightarrow \begin{aligned}
& \mathrm{x}=1 ; \\
& \mathrm{y}=6 ; \\
& \mathrm{z}=36 ;
\end{aligned}
$$

- Information about a single variable:
i. Variable never defined
ii. Variable has single constant value
iii. Variable has multiple values

Rest of definition

- Flowfunction for $\mathrm{x}=\mathrm{x}$ OP c_{1} :
$\mathrm{F}_{\mathrm{n}}(\mathrm{T})=\mathrm{T}$
$\mathrm{F}_{\mathrm{n}}(\perp)=\perp$
$\mathrm{F}_{\mathrm{n}}\left(\mathrm{c}_{2}\right)=\mathrm{C}_{2} \mathrm{OP}_{1}$
- Flowfunction is monotonic, distributive: iterative solution works, gives MOP
- What about multiple variables $\mathrm{x}_{1} . . \mathrm{x}_{\mathrm{n}}$? Want tuple ($\mathrm{v}_{1}, . . \mathrm{v}_{\mathrm{n}}$),

One-variable Const. Prop.

Full lattice:

Multiple vars

- Dataflow value is a tuple $\left(\mathrm{v}_{1}, \ldots \mathrm{v}_{\mathrm{n}}\right)$, each v_{i} in lattice $\mathrm{L}=$
- Set of tuples $\left(\mathrm{v}_{1}, \ldots, \mathrm{~V}_{\mathrm{n}}\right)$ is also a lattice under component-wise ordering:

$$
\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \sqsubseteq\left(\mathrm{v}_{1}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}}^{\prime}\right) \Leftrightarrow \forall_{\mathrm{i}} \mathrm{v}_{\mathrm{i}} \sqsubseteq \mathrm{v}_{\mathrm{i}}^{\prime}
$$

$$
\left(\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right) \sqcap\left(\mathrm{v}_{1}^{\prime}, \ldots, \mathrm{v}_{\mathrm{n}}^{\prime}\right)=\left(\mathrm{v}_{1} \sqcap \mathrm{v}_{1}^{\prime}{ }_{1}, \ldots, \mathrm{v}_{\mathrm{n}} \sqcap \mathrm{v}_{\mathrm{n}}\right)
$$

- For any two lattices $\mathrm{L}_{1}, \mathrm{~L}_{2}$, have product lattice $\mathrm{L}_{1} \times \mathrm{L}_{2}$ $\left(\mathrm{v}_{1}, \mathrm{v}_{2}\right) \sqsubseteq\left(\mathrm{v}_{1}^{\prime}, \mathrm{v}^{\prime}{ }_{2}\right) \Leftrightarrow \mathrm{v}_{1} \sqsubseteq \mathrm{v}_{1}^{\prime} \& \mathrm{v}_{2} \sqsubseteq \mathrm{v}_{2}^{\prime}$
- Tuple dataflow values are in $\mathrm{L} \times$... $\times \mathrm{L}=\mathrm{L}^{\mathrm{n}}$

Flow functions

- Consider $\mathrm{x}_{1}=\mathrm{x}_{2} \mathrm{OP}_{3}$
$F\left(\mathrm{x}_{1}, \mathrm{~T}, \mathrm{X}_{3}\right)=\left(\mathrm{T}, \mathrm{T}, \mathrm{x}_{3}\right)$
$F\left(x_{1}, x_{2}, T\right)=\left(T, x_{2}, T\right)$
$\mathrm{F}\left(\mathrm{x}_{1}, \perp, \mathrm{x}_{3}\right)=\left(\perp, \perp, \mathrm{x}_{3}\right)$
$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{x}_{2}, \perp\right)=\left(\perp, \mathrm{x}_{2}, \perp\right)$
$\mathrm{F}\left(\mathrm{x}_{1}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)=\left(\mathrm{c}_{2} \mathrm{OP}_{3}, \mathrm{c}_{2}, \mathrm{c}_{3}\right)$
- Monotonic? Distributes over Π ?

Not MOP!

$$
x_{3}=1
$$

($\mathrm{T}, 1,2$)
$(\mathrm{T}, 2,1)$
$(\mathrm{T}, 1,2) \sqcap(\mathrm{T}, 2,1)=(\mathrm{T}, \perp, \perp)$

$$
x_{1}=x_{2}+x_{3}
$$

$$
(\perp, \perp, \perp)
$$

$F((T, 1,2) \sqcap(T, 2,1)) \neq F(\top, 1,2) \sqcap F(T, 2,1)$
Lecture 29 CS 412/413 Spring '01-- Andrew Myers

Loops

- Most execution time in most programs is spent in loops: 90/ 10 is typical
- Most important targets of optimization: loops
- Loop optimizations:
- loop-invariant code motion
- loop unrolling
- loop peeling
- strength reduction of expressions containing induction variables
- removal of bounds checks
- loop tiling
- When to apply loop optimizations?

Definition of a loop

- A loop is a set of nodes in the control flow graph, with one distinguished node called the header (entry point)
- Every node is reachable from header, header reachable from every node: strongly-connected component
- No entering edges from outside except to header
- nodes with outgoing edges: loop exit nodes

Dominators

- CFA based on idea of dominators
- Node A dominates node B if the only way to reach B from start node is through A
- Edge in flowgraph is a back edge if destination dominates source
- A loop contains at least one back edge

High-level optimization?

- Loops may be hard to recognize in IR or quadruple form -- should we apply loop optimizations to source code or high-level IR?
- Many kinds of loops: while, do/ while, continue
- loop optimizations benefit from other IR-level optimizations and vice-versa -- want to be able to interleave
- Problem: identifying loops in flowgraph

Nested loops

- Control-flow graph may contain many loops, and loops may contain each other
- Control-flow analysis : identify the loops and nesting structure:

Lecture 29 CS 412/413 Spring '01-- Andrew Myers 16

Dominator tree

- Domination is transitive; if A dominates B and B dominates C, then A dominates C
- Domination is anti-symmetric
- Every flowgraph has dominator tree (Hasse diagram of domination relation)

Dominator dataflow analysis

- Forward analysis; out[n] is set of nodes dominating n
- "A node \mathbf{B} is dominated by another node \mathbf{A} if \mathbf{A} dominates all of the predecessors of \mathbf{B} "

$$
\operatorname{in}[\mathrm{n}]=\cap_{\mathrm{n}^{\prime} \in \operatorname{pred}[n]} \text { out }\left[\mathrm{n}^{\prime}\right]
$$

- "Every node dominates itself"

$$
\operatorname{out}[n]=\operatorname{in}[n] \cup\{n\}
$$

- Formally: $\mathrm{L}=$ sets of nodes ordered by \subseteq, flow functions $\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\mathrm{x} \cup\{\mathrm{n}\}, \sqcap=\cap, \mathrm{T}=\{$ all n$\}$ \Rightarrow Standard iterative analysis gives best soln

Completing control-flow analysis

- Dominator analysis gives all back edges
- Each back edge $n \rightarrow h$ has an associated natural loop with h as its header: all nodes reachable from h that reach n without going through h
- For each back edge, find natural loop
- Nest loops based on subset relationship between natural loops
- Exception: natural loops may share same header; merge them into larger loop.
- Control tree built using nesting relationship

