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Administration

• HW4 due Friday the 13th

• Prelim 2 next Tuesday
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Last time
Dataflow analysis framework:

1. Lattice of dataflow information values L
with order �, top �

2. Monotonic flow functions Fn : L→L
3. Meet (GLB) operator � on L

n

x

Fn(x)

x y

x � y
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Solution quality
• MOP is best possible solution:

out[n] = �all paths (…, p2, p1 ,n) Fn(Fp1(Fp2(…)))

• Does iterative analysis
xi = Fi(�j ∈ pred[i] xj)

produce the MOP solution?

• Yes, if flow functions distribute over the meet 
operator:

�i Fn(xi) = Fn (�i xi)

• Not all analyses give MOP solution!
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Other analyses
• Live variables, reaching definitions

Fn(l) = gen[n] � (l – kill[n]),     � = �

• Available expressions

Fn(l) = gen[n] � (l – kill[n]),     � = �

• Do they terminate?

• Compute MOP solutions?
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Summary
• Analyses for standard optimizations fit 

into dataflow analysis framework

• Iterative analysis finds solution if flow 
function monotonic in �, combining 
function � is GLB of lower semilattice

• Solution is MOP if distribution condition 

�i F(xi) = F(�i xi) holds
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“classic” constant propagation
• Idea: propagate and fold integer constants 

in one pass

x = 1; x = 1;
y = 5+x; y = 6;
z = y*y; z = 36;

• Information about a single variable:
i. Variable never defined

ii. Variable has single constant value

iii. Variable has multiple values
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One-variable Const. Prop.

never
defined

constant

constant

constant c1 constant c2

multiple

�

�

…  -3 -2 -1 0 1 2 3  …

Full lattice:
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Rest of definition
• Flow function for x = x OP c1:

Fn(�) = �
Fn(�) = �
Fn(c2) = c2 OP c1

• Flow function is monotonic, distributive: 
iterative solution works, gives MOP

• What about multiple variables x1…xn? 
Want tuple (v1,…vn),
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Multiple vars
• Dataflow value is a tuple (v1,…vn), each vi in lattice L=

• Set of tuples (v1,…,vn) is also a lattice
under component-wise ordering:

(v1,…,vn) �(v�1,…,v�n)  ⇔ ∀ i vi �v�i
(v1,…,vn) � (v�1,…,v�n) = (v1�v�1,…,vn�vn)

• For any two lattices L1, L2, have product lattice L1×L2 
(v1, v2) �(v�1,v�2) ⇔ v1 � v�1   & v2 �v�2

• Tuple dataflow values are in L×…×L = Ln

�

�

…  -3 -2 -1 0 1 2 3  …
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Flow functions
• Consider x1 = x2 OP x3

F(x1, �, x3) = (�, �, x3)

F(x1, x2, �) = (�, x2, �)

F(x1, �, x3) = (�, �, x3)

F(x1, x2, �) = (�, x2, �)

F(x1, c2, c3) = (c2 OP c3, c2, c3)

• Monotonic? Distributes over �?
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Not MOP!

F((�, 1, 2) � (�, 2, 1)) ≠ F(�, 1, 2)�F(�, 2, 1)

x2 = 1

x3 = 2

x2 = 2

x3 = 1

x1 = x2 + x3

(�, 1, 2) (�, 2, 1)

(�, 1, 2) � (�, 2, 1)=(�, �, �)

(�, �, �)
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Loops
• Most execution time in most programs is 

spent in loops: 90/10 is typical

• Most important targets of optimization: loops

• Loop optimizations:
– loop-invariant code motion

– loop unrolling

– loop peeling

– strength reduction of expressions containing 
induction variables

– removal of bounds checks

– loop tiling

• When to apply loop optimizations?
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High-level optimization?
• Loops may be hard to recognize in IR or 

quadruple form -- should we apply loop 
optimizations to source code or high-level 
IR?
– Many kinds of loops: while, do/while, 

continue

– loop optimizations benefit from other IR-level 
optimizations and vice-versa -- want to be 
able to interleave

• Problem: identifying loops in flowgraph
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Definition of a loop
• A loop is a set of nodes in the control flow graph, 

with one distinguished node called the header
(entry point)

• Every node is reachable
from header, header
reachable from every
node: strongly-connected
component

• No entering edges from
outside except to header

• nodes with outgoing
edges: loop exit nodes

header

loop exit
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Nested loops
• Control-flow graph may contain many 

loops, and loops may contain each other

• Control-flow analysis : identify the loops 
and nesting structure:

inner loop

control
tree
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Dominators
• CFA based on idea of dominators

• Node A dominates node B if the only way 
to reach B from start node is through A

• Edge in flowgraph is a
back edge if destination
dominates source

• A loop contains at least
one back edge

1

2

54
3

back edge
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Dominator tree
• Domination is transitive; if A dominates B and B 

dominates C, then A dominates C
• Domination is anti-symmetric
• Every flowgraph has dominator tree (Hasse 

diagram of domination relation)
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Dominator dataflow analysis
• Forward analysis; out[n] is set of nodes 

dominating n

• “A node B is dominated by another node A if A
dominates all of the predecessors of B”

in[n] = �n’∈ pred[n] out[n’]

• “Every node dominates itself”

out[n] = in[n] ∪ {n}

• Formally: L = sets of nodes ordered by ⊆ , flow 
functions Fn(x) = x ∪ {n}, �=�, � = {all n}
� Standard iterative analysis gives best soln
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Completing control-flow analysis
• Dominator analysis gives all back edges

• Each back edge n→h has an associated natural loop
with h as its header: all nodes reachable from h that 
reach n without going through h

• For each back edge, find natural loop

• Nest loops based on subset
relationship between natural loops

• Exception: natural loops may share
same header; merge them into
larger loop.

• Control tree built using nesting
relationship
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