Introduction to Compilers

Andrew Myers
Cornell University

Lecture 29: Data-flow, control-flow
analysis
11 Apr 01

Administration

* HWA4 due Friday the 13t
e Prelim 2 next Tuesday

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers

Last time

Dataflow analysis framework:

1. Lattice of dataflow information values L
with order =, top T

2. Monotonic flow functions F,: L - L
3. Meet (GLB) operator rion L

X

XMy
Fa(®)

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers

Solution quality
« MORP is best possible solution:
OUt[n] = I_I all paths (..., p2, p1.n) Fn(FP1(FP2('“)))
» Does iterative analysis
Xi = Fi(l_lj Opredri] %)

produce the MOP solution?
* Yes, if flow functions distribute over the meet

operator:

M Fa0) = Fy (M%)

Not all analyses give MOP solution!

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers

Other analyses
« Live variables, reaching definitions
F.(D=gen[n] U (I—kill[n]), m=u
» Available expressions
F.(D=gen[n] U (I—=kill[n]), m=n

e Do they terminate?
e Compute MOP solutions?

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers

Summary
< Analyses for standard optimizations fit
into dataflow analysis framework

« lIterative analysis finds solution if flow
function monotonic in =, combining
function 1 is GLB of lower semilattice

» Solution is MOP if distribution condition
[, F(x;) = F(['1; x;) holds

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers

“classic’ constant propagation

« ldea: propagate and fold integer constants
in one pass

x=1; x=1;
y=5+x;ﬁ>y=6;
Z =YYy, z = 36;

« Information about a single variable:
i. Variable never defined
ii. Variable has single constant value
iii. Variable has multiple values

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 7

One-variable Const. Prop.

never
A constant constantc; constantc
deflrid‘ P i v 2
constant multiple

Full lattice:

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 8

Rest of definition

* Flow function for x = x OP c;:
Fo(r)=-
Fa(1) =1
F.(c,) =c,0P ¢,
« Flow function is monotonic, distributive:
iterative solution works, gives MOP
* What about multiple variables x;...x,?
Want tuple (v,,...v,),

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 9

Multiple vars

Dataflow value is a tuple (v,,...v,,), each v; in lattice L=

O

372210
Set of tuples (v,,...,v,) is also a lattice \\\‘ ///
under component-wise ordering: .
(VieeVy) EWV V) = OViEV
(Vlv--'vvn) n (Vllv'ﬂvln) = (Vll_‘vll""'vnﬂvn)
< For any two lattices L,, L,, have product lattice L,xL,
(V1 Vo) E(V1V) = Vi EV & VpEV)

Tuple dataflow values are in Lx...xL = L"

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 10

Flow functions

 Consider x, = X, OP X

F(x;, T,%3) =(T, T, Xg)

F(X;, X5, T) = (T, Xy, T)

F(x;, L,X5) = (L, L, Xg)

F(x;, X, 1) = (L, Xy, 1)

F(X;, €, €3) = (¢, OP 3, €y, C3)
« Monotonic? Distributes over 1?

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 1

(L, 1, 1)

F((T,4,2)1(T,2,1)2F(T,1,2)rF(T, 2, 1)

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 12

Loops

« Most execution time in most programs is
spent in loops: 90/10 is typical
« Most important targets of optimization: loops
< Loop optimizations:
— loop-invariant code motion
— loop unrolling
— loop peeling
— strength reduction of expressions containing
induction variables
— removal of bounds checks
— loop tiling

*.When to apply I9op optimizations?

Lecture ng "01 = 1A

High-level optimization?

« Loops may be hard to recognize in IR or
quadruple form -- should we apply loop
optimizations to source code or high-level
IR?

—Many kinds of loops: while, do/while,
continue

—loop optimizations benefit from other IR-level
optimizations and vice-versa -- want to be
able to interleave

» Problem: identifying loops in flowgraph

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 14

Definition of a loop

» Aloop is a set of nodes in the control flow graph,
with one distinguished node called the header
(entry point)

« Every node is reachable
from header, header
reachable from every
node: strongly-connected
component

< No entering edges from
outside except to header

< nodes with outgoing
edges: loop exit nodes

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 15

Nested loops

e Control-flow graph may contain many
loops, and loops may contain each other

« Control-flow analysis : identify the loops
and nesting structure:

control
tree

inner loop

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 16

Dominators

¢ CFA based on idea of dominators

« Node A dominates node B if the only way
to reach B from start node is through A

e Edge in flowgraph is a

back edge if destination @
dominates source
. @\ back edge
< Aloop contains at least & B
one back edge ©

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 17

Dominator tree

* Domination is transitive; if A dominates B and B
dominates C, then A dominates C
« Domination is anti-symmetric

« Every flowgraph has dominator tree (Hasse
diagram of domination relation)

®

@
©)
©

®

(@
©®

)
)

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers 18

Dominator dataflow analysis
Forward analysis; out[n] is set of nodes
dominating n
“A node B is dominated by another node A if A
dominates all of the predecessors of B”

in[n] = r\n\ pred[n] OUt[ny]
“Every node dominates itself”

out[n] =in[n] O {n}

Formally: L = sets of nodes ordered by [, flow
functions F(x) = x O {n}, r1=n, T ={all n}
= Standard iterative analysis gives best soln

Lecture 29 CS 412/413 Spring '01 -- Andrew Myers

Completing control-flow analysis

Dominator analysis gives all back edges

Each back edge n - h has an associated natural loop
with h as its header: all nodes reachable from h that
reach n without going through h

For each back edge, find natural loop
Nest loops based on subset
relationship between natural loops
Exception: natural loops may share
same header; merge them into
larger loop.

Control tree built using nesting
relationship

ecture 29 CS 412/413 Spring '01 -- Andrew Myers 20

