## ,

CS 412
Introduction to Compilers
Andrew Myers
Cornell University
Lecture 28: Dataflow analysis frameworks 9 Apr 01

## Available expressions

- Idea: want to perform common subexpression elimination

$$
\begin{aligned}
& a=x+1 \\
& \ldots=x+1 \\
& b=x
\end{aligned} \triangleleft \begin{gathered}
a=x+1 \\
\ldots=a
\end{gathered}
$$

- Transformation is safe if original $x+1$ is an available expression (still computes same value)

Lecture 28 CS 412/413 Spring '01-- Andrew Myers
Lecture 28 CS 412/413 Spring '01-- Andrew Myers

## Dataflow equations

out[n] $\supseteq$ gen[n]
$\operatorname{in}\left[n^{\prime}\right] \subseteq$ out $[n] \quad$ (if $n^{\prime}$ is succ. of $n$ ) out $[n] \cup$ kill $[n]$ in $[n]$
Equations for iterative solution:
out $[n]=\operatorname{gen}[n] \cup(\operatorname{in}[n]-\operatorname{kill}[n])$
$\operatorname{in}\left[\mathrm{n}^{\prime}\right]=\cap_{\mathrm{n} \in \operatorname{pred}\left[\mathrm{n}^{\prime}\right]}$ out[ n$]$
$\sqcap=\cap$ Starting condition:
$\mathrm{in}[\mathrm{n}]$ is set of all nodes in $[s t a r t]=\varnothing$

Lecture 28 CS 412/413 Spring '01-- Andrew Myers

## Dataflow analysis

- Propagates information about program through flowgraph. Dataflow values make up space L
- Solution: in[n], out[n] $\in$ L for every node n
- Live variable analysis: set of live variables
- Available expressions: set of available exprs


Lecture 28 CS 412/413 Spring '01-- Andrew Myers

## Combining operator

1. Space of values $L$
2. Flow function $F_{n}$ for every noden
3. Combining operator $\sqcap$
"If we know either $l_{1}$ or $l_{2}$ holds on entry to n , we know at most $l_{1} \sqcap \mathrm{l}_{2}^{\prime \prime}$
$\operatorname{in}[\mathrm{n}]=\prod_{\mathrm{n}^{\prime} \in \operatorname{pred}[\mathrm{n}]}$ out[ $\left.\mathrm{n}^{\prime}\right]$
livevars: $\sqcap=\cup$ avail exprs: $\sqcap=\cap$


Lecture 28 CS $412 / 413$ Spring '01-. Andrew Myers

## Questions

Will iterative analysis

- produce a solution when it terminates?
- produce the best solution possible?
- terminate?
- Depends on properties of $\mathrm{L}, \mathrm{F}_{\mathrm{n}}, \sqcap$


## Dataflow analysis framework

Dataflow analysis characterized by:

1. Space of values L
2. Flow function $\mathrm{F}_{\mathrm{n}}$ for every noden out $[\mathrm{n}]=\mathrm{F}_{\mathrm{n}}(\mathrm{in}[\mathrm{n}])$ $\mathrm{F}_{\mathrm{n}}: \mathrm{L} \rightarrow \mathrm{L}$

"If $l \in L$ is true before executing node $n$, $\mathrm{F}_{\mathrm{n}}(\mathrm{l})$ is true afterward"

All analyses so far: $\mathrm{F}_{\mathrm{n}}(\mathrm{l})=$ gen[n] $\cup(\mathrm{l}-\mathrm{kill}[\mathrm{n}])$
Live vars: $\mathrm{F}_{\mathrm{n}}(\mathrm{l})=$ use[n] $\cup(\mathrm{l}-\operatorname{def}[\mathrm{n}])$ (gen=use, kill=def)
Lecture 28 CS 412/413 Spring '01-- Andrew Myers 8


## L as partial order

- Best solution has as much information as possible- allows most optimization
- Live variables: smallest possible set
- Available expressions: largest possible set
- Some dataflow values contain more information: $l_{1} \sqsubseteq l_{2}$ if $l_{2}$ has at least as much information as $l_{1}$
- Live variables: $l_{1} \sqsubseteq l_{2} \Leftrightarrow l_{1} \supseteq l_{2}$
- Available expressions: $l_{1} \subseteq l_{2} \Leftrightarrow l_{1} \subseteq l_{2}$


## Partial orders

- L is a partial order defined by ordering relation $\sqsubseteq$
- Some elements are incomparable
- Properties of a partial order
$\mathrm{x} \sqsubseteq \mathrm{x}$
$\mathrm{x} \sqsubseteq \mathrm{y} \wedge \mathrm{y} \sqsubseteq \mathrm{Z} \Rightarrow \mathrm{x} \subseteq \mathrm{Z} \quad$ (transitive)
$\mathrm{x} \sqsubseteq \mathrm{y} \wedge \mathrm{y} \sqsubseteq \mathrm{x} \Rightarrow \mathrm{x}=\mathrm{y} \quad$ (anti-symmetry)
- Examples: integers ordered by $\leq$, types ordered by <:, sets ordered by $\subseteq$ or $\supseteq$.

Example: subsets of $\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}$


Lecture 28 CS 412/413 Spring '01-- Andrew Myers

## Meet-over-paths solution

- Consider traversal of flowgraph visiting nodes a, b, c, .., n
- Assume $l_{0}$ is initial information
- Knowable information is

$$
\mathrm{F}_{\mathrm{n}}\left(\ldots\left(\mathrm{~F}_{\mathrm{c}}\left(\mathrm{~F}_{\mathrm{b}}\left(\mathrm{~F}_{\mathrm{a}}\left(l_{0}\right)\right)\right)\right)\right.
$$

- Best possible solution is l such that
$\mathrm{l} \sqsubseteq \mathrm{F}_{\mathrm{n}}\left(\ldots\left(\mathrm{F}_{\mathrm{c}}\left(\mathrm{F}_{\mathrm{b}}\left(\mathrm{F}_{\mathrm{a}}\left(\mathrm{l}_{0}\right)\right)\right)\right)\right.$
for all paths $a, b, c, \ldots, n$
- MOP (meet-over-paths) soln:
$\rceil_{\text {all paths }} \mathrm{F}_{\mathrm{p}_{1}}\left(\mathrm{~F}_{\mathrm{p}_{2}}\left(\mathrm{~F}_{\mathrm{p}_{3}}(\ldots)\right)\right)$
Lecture 28 CS 412/413 Spring '01-- Andrew Myers


## Fixed points

- Iterative analysis: initialize all $\mathrm{x}_{\mathrm{i}}$ with top of lattice ( $\mathbf{X}_{0}=(\mathrm{T}, \mathrm{T}, \mathrm{T}, \ldots)$ ), apply $\mathbf{F}(\mathbf{X})$ until fixed point is reached:

$$
\mathbf{F}^{\mathrm{k}}\left(\mathbf{X}_{0}\right)=\mathbf{F}^{\mathrm{k}+1}\left(\mathbf{X}_{0}\right)
$$

- $\mathbf{F}^{k}\left(\mathbf{X}_{0}\right)$ is a fixed point of F : a value that F maps to itself
- Wanted: maximal fixed point


## Monotonicity

- Flow functions map lattice values to other lattice values; must be monotonic
- Monotonicity:
$\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Rightarrow \mathrm{~F}\left(\mathrm{l}_{1}\right) \sqsubseteq \mathrm{F}\left(\mathrm{l}_{2}\right)$
"If you have more information entering a node, you have at least as much leaving"
- Example: reaching definitions. Lattice is all sets of defining nodes ordered by subset relation:

$$
\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \sqcup(\mathrm{x}-\operatorname{kill}[\mathrm{n}])
$$

## Solution quality

- MOP is best possible solution:

$$
\Pi_{\text {all pathsp }} \mathrm{F}_{\mathrm{p} 1}\left(\mathrm{~F}_{\mathrm{p} 2}\left(\mathrm{~F}_{\mathrm{p} 3}(\ldots)\right)\right)
$$

- Does iterative analysis

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}\left(\Gamma_{\mathrm{j} \in \operatorname{predij}} \mathrm{x}_{\mathrm{j}}\right)
$$

produce the MOP solution?

- Yes, if flow functions distribute over the meet operator:

$$
\Pi_{\mathrm{i}} \mathrm{~F}_{\mathrm{n}}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}_{\mathrm{n}}\left(\Pi_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)
$$

- Not all analyses give MOP solution!


## Monotonic?

$$
\begin{gathered}
\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-\operatorname{kill}[\mathrm{n}]) \\
\mathrm{x}_{1} \sqcap \mathrm{x}_{2}=\mathrm{x}_{1} \cup \mathrm{x}_{2} \\
\mathrm{x} \sqsubseteq \mathrm{y} \Leftrightarrow \mathrm{x} \supseteq \mathrm{y}
\end{gathered}
$$

- Is $\mathrm{F}_{\mathrm{n}}(\mathrm{x})$ monotonic?
$\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-$ kill[ n$\left.]\right)$
$F_{n}(x \cup y)=\operatorname{gen}[n] \cup((x \cup y)-\operatorname{kill}[n])=$ $\operatorname{gen}[n] \cup(x-\operatorname{kill}[n]) \cup(y-\operatorname{kill}[n])=$ $\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \cup(\mathrm{y}-\operatorname{kill}[\mathrm{n}])$


## Termination

- First step either lowers some $\mathrm{x}_{\mathrm{i}}$ or terminates
- Second step sees same $x_{i}$ as first step ( $T$ ), or possibly lower: $\mathbf{F}\left(\mathbf{X}_{0}\right) \sqsubseteq \mathbf{X}_{0}$
- Monotonicity $\mathrm{l}_{1} \sqsubseteq \mathrm{l}_{2} \Rightarrow \mathbf{F}\left(\mathrm{l}_{1}\right) \sqsubseteq \mathbf{F}\left(\mathrm{l}_{2}\right)$
$\Rightarrow$ output of second step $\mathbf{F}^{2}\left(\mathbf{X}_{0}\right)$ is lower than first step (or it terminates): $\mathbf{F}^{2}\left(\mathbf{X}_{0}\right) \sqsubseteq \mathbf{F}^{1}\left(\mathbf{X}_{0}\right)$
- Induction: each iteration moves at least one node lower in lattice: $\mathbf{F}^{\mathrm{i}+1}\left(\mathbf{X}_{0}\right) \subseteq \mathbf{F}^{\mathrm{i}}\left(\mathbf{X}_{0}\right)$
- \# algorithm steps to fixed point is at most height of lattice H times number of nodes n : $\mathrm{k}=\mathrm{O}(\mathrm{nH})$

Lecture 28 CS 412/413 Spring '01-- Andrew Myers

## Reaching definitions

- L is all sets of defining nodes in call flow graph. Maximum information means smallest possible lists of reaching definitions, so:
- Top ( $T$ ) is the empty set $\}$, meet ( $\square$ ) is set union ( $\cup$ )
$\mathrm{x}_{\mathrm{n}}=$ out[n]
$\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-\operatorname{kill}[\mathrm{n}])$

$$
\begin{aligned}
& \mathrm{x}_{\mathrm{i}}=\mathrm{F}_{\mathrm{i}}\left(\sqcap_{\mathrm{j} \in \operatorname{pred}[\mathrm{i}]} \mathrm{x}_{\mathrm{j}}\right) \not \square_{\text {Lecture } 28}^{\operatorname{CS} 412 / 413 \text { Spring '01-- Andrew Myers }} \begin{array}{c}
\mathrm{in}[\mathrm{n}]=\cup_{\mathrm{n}^{\prime} \in \operatorname{prev}[\mathrm{n}]} \text { out[nt }[\mathrm{n}]=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{in}[\mathrm{n}]-\operatorname{kill}[\mathrm{n}])
\end{array}
\end{aligned}
$$

$$
\begin{gathered}
\text { MOP? } \\
\mathrm{F}_{\mathrm{n}}(\mathrm{x})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{x}-\operatorname{kill}[\mathrm{n}]) \\
\mathrm{x}_{1} \sqcap \mathrm{x}_{2}=\mathrm{x}_{1} \cup \mathrm{x}_{2}
\end{gathered}
$$

- Does $\mathrm{F}_{\mathrm{n}}(\mathrm{x})$ distribute over $\sqcap$ ?
$\mathrm{F}_{\mathrm{n}}(\mathrm{x} \sqcap \mathrm{y})=\mathrm{F}_{\mathrm{n}}(\mathrm{x} \cup \mathrm{y})$
$=\operatorname{gen}[n] \cup((x \cup y)-\operatorname{kill}[n])$
$=(\operatorname{gen}[n] \cup(x-k i l l[n]))$
$\cup(\operatorname{gen}[n] \cup(\mathrm{y}-\mathrm{kill}[\mathrm{n}]))$
$=\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \cup \mathrm{F}_{\mathrm{n}}(\mathrm{y})=\mathrm{F}_{\mathrm{n}}(\mathrm{x}) \sqcap \mathrm{F}_{\mathrm{n}}(\mathrm{y})$
$\therefore$ Iterative analysis always terminates, finds the best possible (meet-over-paths) solution to reaching definitions
Lecture 28 CS 412/413 Spring '01-- Andrew Myers


## Other analyses

- Live variables

$$
\begin{gathered}
\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\mathrm{use}[\mathrm{n}] \cup(\mathrm{l}-\operatorname{def}[\mathrm{n}]) \\
\square=\cup
\end{gathered}
$$

- Available expressions

$$
\mathrm{F}_{\mathrm{n}}(\mathrm{l})=\operatorname{gen}[\mathrm{n}] \cup(\mathrm{l}-\operatorname{kill}[\mathrm{n}])
$$

$$
\sqcap=\cap
$$

- Computes MOP solutions?


## Summary

- Analyses for standard optimizations fit into dataflow analysis framework
- Iterative analysis finds solution if flow function monotonic in $\subseteq$, combining function $\sqcap$ defines lower semilattice
- Solution is MOP if distribution condition $\Pi_{\mathrm{i}} \mathrm{F}\left(\mathrm{x}_{\mathrm{i}}\right)=\mathrm{F}\left(\Pi_{\mathrm{i}} \mathrm{x}_{\mathrm{i}}\right)$ holds

