

CS 412
Introduction to Compilers
Andrew Myers
Cornell University
Lecture 27: Dataflowanalysis 6 Apr 01

Dataflow analyses

- Live variable analysis - register allocation, dead-code elimination
- Reaching definitions: what points in program does each variable definition reach? - copy, constant propagation
- Available expressions: which expressions computed earlier still have same value? - common sub-expression elimination

Lecture 27 CS $412 / 413$ Spring '01-- Andrew Myers

Quadruples

- Quadruple sequence is control flow graph (flowgraph)
- Nodes in graph: quadruples (not assembly statements)
- Edges in graph: ways to transfer control between quadruples (including fall-through)
- For node n, use[n] is variables used, $\operatorname{def}[n]$ is variables defined (assigned)
- Can generate directly from AST

IR for data-flow analysis

- Tree IR: good for instruction selection, not so good for dataflow analysis
- Can flatten tree representation into simple nodes (a, b, c temps, labels L)
$\operatorname{MOVE}(a, O P(b, c))$
$\operatorname{MOVE}(a, \operatorname{MEM}(b))$ $a=b$ OP c
$a=[b]$
MOVE (a, MEM(b)) $a=[b]$
$[a]=b$
$\operatorname{MOVE}(\operatorname{MEM}(a), b)$
J UMP(L) [a] $=b$
goto L
CJ UMP(a, L1, L2)
if a goto L1 else L2
LABEL(L)
$\operatorname{MOVE}(a, \operatorname{CALL}(f, \ldots))$
$\mathrm{L}:$
$\mathrm{a}=$
a
$\operatorname{EXP}(\mathrm{a}, \operatorname{CALL}(\mathrm{f}, \ldots)$.
$a=f(\ldots)$
f(...)
Quadruples
Lecture 27 CS 412/413 Spring '01-- Andrew Myers

Converting to quadruples

- Conversion is tree simplification that aggressively adds new temporaries

Def \& Use

n
$a=b$ OP c a \quad b, c

$a=[b]$	a	b
$[a]=b$	a, b	

goto L
if a goto L1 else goto L2
$a=f(\ldots)$
f(...)
a
(

Converting back to tree

- Convert quadruples to simple trees
- Look for temporaries in statement sequence used and defined only once
- Move definition just before use
- Glue tree, eliminating temporary
$t=c * a$
$a=\ldots+t$$\triangleleft \begin{gathered}\operatorname{MOVE}(t, *(c, a)) \\ \operatorname{MOVE(a,+(b,t))}\end{gathered} \Rightarrow \operatorname{MOVE(a,+(b,*(c,a)))}$
- Requires dataflow analyses to do right (reaching definitions, available expressions)

Lecture 27 CS 412/413 Spring '01-- Andrew Myers

Live variable analysis

- Useful even for IR: dead code elimination
- Output: in[n] and out[n] associated with every node n in flowgraph
- Constraints:
in[n] \supseteq use[n]
$\operatorname{in}[n] \cup \operatorname{def}[n] \supseteq$ out[n]
out $[n] \supseteq$ in[$\left.n^{\prime}\right]$ for all successors n^{\prime} of n
- Dataflow equations:
$\operatorname{in}[n]=u s e[n] \cup(o u t[n]-\operatorname{def}[n])$
$\operatorname{out}[\mathrm{n}]=\cup_{\mathrm{n}^{\prime}} \operatorname{in}\left[\mathrm{n}^{\prime}\right]$
Lecture 27 CS 412/413 Spring '01-- Andrew Myers

Reaching definitions analysis

- Question: what uses in program does a given variable definition reach?
- Used for constant propagation, copy propagation
- if only one definition reaches a particular use, can replace use by definition
- copy propagation requires that copied value still has same value - use available expressions
- Input: flowgraph
- Output: in[n], out[n] is set of nodes defining some variable such that defn may reach beginning, end of n

Reaching definitions

Gen, kill

- Define: $\operatorname{defs}(x)$ is set of nodes defining var x
- Define: gen[n], kill[n]

n	gen[n]	kill[n]
$a=b$ OP c		
$a=[b]$	$\{n\}$	$\operatorname{defs}(a)-\{n\}$
$[a]=b$	$\{n\}$	$\operatorname{defs}(a)-\{n\}$
goto L	$\}$	$\}$
if a goto L1 else goto L2	$\}$	$\}$
L:	$\}$	$\}$
$a=f(\ldots)$	$\{n\}$	$\}$
$f(\ldots)$	$\}$	$\operatorname{defs}(a)-\{n\}$
		$\}$

Data-flow equations

$$
\begin{aligned}
& \operatorname{in}\left[n^{\prime}\right]=\cup_{n \in \operatorname{prev}\left[n^{\prime}\right]} \operatorname{out}[n] \\
& \operatorname{out}[n]=\operatorname{gen}[n] \cup(\operatorname{in}[n]-\operatorname{kill}[n])
\end{aligned}
$$

- Algorithm: init in[n], out[n] with empty sets, apply equations as assignments until no progress (usual representation: bit vector)
- Eventually all equations satisfied
- Will terminate because in[n], out[n] can only grow, can be no larger than set of all defns
- Finds minimal solution to constraint eqns: accurate
Lecture 27 CS 412/413 Spring '01-- Andrew Myers

du-, ud-chains

Webs

- Register allocation by webs avoids false conflicts
int i;

$$
\text { for }(i=0 ; i \triangleleft n ; i++)\{\ldots\}
$$

$$
\text { for }(i=0 ; i \subset n ; i++)\{\ldots\} \text { no use/def pairs! }
$$

- Two different webs: can allocate i to two different registers

Forward vs. Backward

- Liveness: backward analysis

```
in[n] =use[n] \cup (out[n] - def [n])
    out[n] = U Un'\in suoc[n] in[n']
```

- Reaching definitions: forward analysis
out[n] $=\operatorname{gen}[n] \cup($ in[n] - kill[n] $)$ $\operatorname{in}\left[\mathrm{n}^{\prime}\right]=\cup_{\mathrm{n} \in \operatorname{prev}\left[\mathrm{n}^{\prime}\right]}$ out[n]

Available expressions

- Idea: want to perform common subexpression elimination

$$
\begin{gathered}
a=x+1 \\
\ldots \\
b=x+1
\end{gathered} \quad \square \begin{gathered}
a=x+1 \\
\ldots=a
\end{gathered}
$$

- Transformation is safe if original $x+1$ is an available expression (still computes same value)

Register allocation

1. use reaching definitions to compute all related uses and defs
2. compute disjoint webs, rename all temporaries to their web names
3. run register allocation as before : fewer interfering temporaries

Dataflow analysis

- Many dataflow analyses characterized simply by
- forward vs. backward analysis
- gen[n]
- kill[n]
- Use of intersection vs. union when combining data from several nodes (operator 7)
out[n] $=\operatorname{gen}[n] \cup(i n[n]-\operatorname{kill}[n])$
$\operatorname{in}\left[\mathrm{n}^{\prime}\right]=\Pi_{\mathrm{n} \in \operatorname{prev}\left[\mathrm{n}^{\prime}\right]}$ out[n]

Dataflow values

- Let in[n], out[n] be sets of nodes whose computed expression is available at n

Constraints

```
out[n] \supseteq gen[n]
```

"An expression made available by n at least reaches n's output"
$\operatorname{in}\left[\mathrm{n}^{\prime}\right] \subseteq$ out $[\mathrm{n}]$ (if n^{\prime} is succ. of n)
"An expression is available at n ' only if it is available at every predecessor n"
out $[n] \cup$ kill[$n] \supseteq \operatorname{in}[n]$
"An expression available on input is either available on output or killed"

Summary

- Tree IR makes dataflow more difficult
- Saw reaching definitions, available expressions analyses
- How to use reaching definitions for better register allocations via webs
- Next time: a theory to explain why iterative solving works

