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Need for dataflow analysis
• Most optimizations require program 

analysis to determine safety

• This lecture: dataflow analysis

• Standard program analysis framework
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Dataflow analyses

• Live variable analysis — register 
allocation, dead-code elimination

• Reaching definitions: what points in 
program does each variable definition 
reach? — copy, constant propagation

• Available expressions: which 
expressions computed earlier still have 
same value? — common sub-expression 
elimination
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IR for data-flow analysis

• Tree IR: good for instruction selection, not so 
good for dataflow analysis

• Can flatten tree representation into simple 
nodes (a,b,c temps, labels L)

MOVE(a, OP(b,c)) a = b OP c
MOVE(a, MEM(b)) a = [b]
MOVE(MEM(a), b) [a] = b
JUMP(L) goto L
CJUMP(a,L1,L2) if a goto L1 else L2
LABEL(L) L:
MOVE(a, CALL(f,…))   a = f(…)
EXP(a, CALL(f,…)) f(…)

Quadruples
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Quadruples
• Quadruple sequence is control flow graph 

(flowgraph)

• Nodes in graph: quadruples (not assembly 
statements)

• Edges in graph: ways to transfer control between 
quadruples (including fall-through)

• For node n, use[n] is variables used, def [n] is 
variables defined (assigned)

• Can generate directly from AST
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IR optimization

Canonical IR

Abstract assembly

Quadruples (flowgraph)
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Converting to quadruples
• Conversion is tree simplification that 

aggressively adds new temporaries

MOVE
a +

*b
c a

a = b + (c * a) t = c * a
a = b + t

MOVE
t *

c a

MOVE
a +

b t
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Converting back to tree
• Convert quadruples to simple trees
• Look for temporaries in statement 

sequence used and defined only once
• Move definition just before use
• Glue tree, eliminating temporary

• Requires dataflow analyses to do right (reaching 
definitions, available expressions)

t = c * a
…

a = b + t
MOVE(a, +(b,*(c,a)))

MOVE(t, *(c,a))
…

MOVE(a, +(b,t))
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Def & Use

n def[n] use[n]

a = b OP c a b,c
a = [b] a b
[a] = b a, b
goto L
if a goto L1 else goto L2 a
L:
a = f(…) a …
f(…) …
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Live variable analysis

• Useful even for IR: dead code elimination

• Output: in[n] and out[n] associated with 
every node n in flowgraph

• Constraints:

in[n] ⊇ use[n]
in[n] ∪ def [n] ⊇ out[n]
out[n]  ⊇ in[n�]   for all successors n� of n

• Dataflow equations:
in[n] = use[n] ∪ (out[n] – def [n])
out[n] = �n� in[n�]
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Reaching definitions analysis
• Question: what uses in program does a given 

variable definition reach?
• Used for constant propagation, copy 

propagation
– if only one definition reaches a particular use, can 

replace use by definition
– copy propagation requires that copied value still has 

same value – use available expressions

• Input: flowgraph
• Output: in[n], out[n] is set of nodes defining 

some variable such that defn may reach 
beginning, end of n
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Reaching definitions

b = a + 2

c = b*b

b = c + 1

return b*a

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y
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Gen, kill
• Define: defs(x) is set of nodes defining var x
• Define: gen[n], kill[n]

n gen[n] kill[n]

a = b OP c { n } defs(a) – { n }
a = [b] { n } defs(a) – { n }
[a] = b { } { }
goto L { } { }
if a goto L1 else goto L2 { } { } 
L: { } { }
a = f(…) { n } defs(a) – { n }
f(…) { } { }
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Solution Constraints
out[n] ⊇ gen[n]

“A definition made by n at least reaches n’s
output”

in[n�] ⊇ out[n] (if n� is successor of n)
“definitions reach node n� if they exit any
predecessor n”

out[n] ∪ kill[n] = in[n]

“A definition that reaches the input either 
reaches the output or is killed”
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Data-flow equations
in[n�] = �n ∈ prev[n�] out[n]

out[n] = gen[n] ∪ (in[n] – kill[n])
• Algorithm: init in[n], out[n] with empty sets, 

apply equations as assignments until no 
progress (usual representation: bit vector)

• Eventually all equations satisfied

• Will terminate because in[n], out[n] can only 
grow, can be no larger than set of all defns

• Finds minimal solution to constraint eqns: 
accurate
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Def-use chains 
• Reaching definitions tells which nodes a

def can reach

• If node uses same variable, definition 
affects node (conservatively)

• Def-use (du-) chain: def node + all nodes 
with affected uses

• Use-def (ud-) chain: use node + all  nodes 
with defs that might affect use
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du-, ud-chains

b = a + 2

c = b*b

b = c + 1

return a*b*c

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y

DU
b:(W→ X), (Y→Z)

c: (X→Y, Z)

UD
b: (X←W), (Z←Y)
c: (Y←X), (Z←X)
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Webs
• du-chain, ud-chain intersect if share some use or 

definition

• web : maximal set of intersecting du, ud-chains
– disjoint set union algorithm with path compression: 

computable in nearly linear time

• Same variable may comprise multiple non-
interacting webs: permits more optimization
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Webs
• Register allocation by webs avoids false 

conflicts

int i;
for (i = 0; i<n; i++) { … }
…
for (i = 0; i<n; i++) { … }

• Two different webs: can allocate i to two 
different registers

no use/def pairs!
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Register allocation
1. use reaching definitions to compute all 

related uses and defs

2. compute disjoint webs, rename all 
temporaries to their web names

3. run register allocation as before : fewer 
interfering temporaries
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Forward vs. Backward
• Liveness: backward analysis

in[n] = use[n] ∪ (out[n] – def [n])
out[n] = �n�∈ succ[n] in[n�]

• Reaching definitions: forward analysis
out[n] = gen[n] ∪ (in[n] – kill[n])

in[n�] = �n ∈ prev[n�] out[n]

CS 412/413 Spring '01 -- Andrew MyersLecture 27 22

Dataflow analysis
• Many dataflow analyses characterized 

simply by
– forward vs. backward analysis

– gen[n]

– kill[n]

– Use of intersection vs. union when combining 
data from several nodes (operator �)

out[n] = gen[n] ∪ (in[n] – kill[n])
in[n�] = �n ∈ prev[n�] out[n]
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Available expressions
• Idea: want to perform common

subexpression elimination

• Transformation is safe if original x+1 is an 
available expression (still computes same value)

a = x+1
…

b = x+1

a = x+1
…

b = a
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Dataflow values 
• Let in[n], out[n] be sets of nodes whose 

computed expression is available at n
n gen[n] kill[n]

a=b OP c {n} – kill[n] uses(a)

a=[b] {n} – kill[n] uses(a)

[a]=b {} uses([x])
(for all x that may be equal to a)

a=f(b1,…bn) {} uses([x]) (for all x)

other {} {}
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Constraints
out[n] ⊇ gen[n]

“An expression made available by n at least 
reaches n’s output”

in[n�] ⊆ out[n] (if n� is succ. of n)
“An expression is available at n� only if it is 
available at every predecessor n”

out[n] ∪ kill[n] ⊇ in[n]

“An expression available on input is either 
available on output or killed”
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Dataflow equations
out[n] ⊇ gen[n]
in[n�] ⊆ out[n] (if n� is succ. of n)
out[n] ∪ kill[n] ⊇ in[n]

Equations for iterative solution:
out[n] = gen[n] ∪ (in[n] – kill[n])
in[n�] =  �n ∈ pred[n�] out[n]

�=� Starting condition:

in[n] is set of all nodes
in[start]= Ø
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Summary
• Tree IR makes dataflow more difficult

• Saw reaching definitions, available 
expressions analyses

• How to use reaching definitions for better 
register allocations via webs

• Next time: a theory to explain why 
iterative solving works


