
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 27: Dataflow analysis
6 Apr 01

CS 412/413 Spring '01 -- Andrew MyersLecture 27 2

Need for dataflow analysis
• Most optimizations require program 

analysis to determine safety

• This lecture: dataflow analysis

• Standard program analysis framework

CS 412/413 Spring '01 -- Andrew MyersLecture 27 3

Dataflow analyses

• Live variable analysis — register 
allocation, dead-code elimination

• Reaching definitions: what points in 
program does each variable definition 
reach? — copy, constant propagation

• Available expressions: which 
expressions computed earlier still have 
same value? — common sub-expression 
elimination

CS 412/413 Spring '01 -- Andrew MyersLecture 27 4

IR for data-flow analysis

• Tree IR: good for instruction selection, not so 
good for dataflow analysis

• Can flatten tree representation into simple 
nodes (a,b,c temps, labels L)

MOVE(a, OP(b,c)) a = b OP c
MOVE(a, MEM(b)) a = [b]
MOVE(MEM(a), b) [a] = b
JUMP(L) goto L
CJUMP(a,L1,L2) if a goto L1 else L2
LABEL(L) L:
MOVE(a, CALL(f,…))   a = f(…)
EXP(a, CALL(f,…)) f(…)

Quadruples

CS 412/413 Spring '01 -- Andrew MyersLecture 27 5

Quadruples
• Quadruple sequence is control flow graph 

(flowgraph)

• Nodes in graph: quadruples (not assembly 
statements)

• Edges in graph: ways to transfer control between 
quadruples (including fall-through)

• For node n, use[n] is variables used, def [n] is 
variables defined (assigned)

• Can generate directly from AST

CS 412/413 Spring '01 -- Andrew MyersLecture 27 6

IR optimization

Canonical IR

Abstract assembly

Quadruples (flowgraph)

Quadruples

instruction
selection

analyze,
optimize

convert basic
blocks to
tree form

Assembly code

register
allocation analyze,

optimize

AST

flatten

?



2

CS 412/413 Spring '01 -- Andrew MyersLecture 27 7

Converting to quadruples
• Conversion is tree simplification that 

aggressively adds new temporaries

MOVE
a +

*b
c a

a = b + (c * a) t = c * a
a = b + t

MOVE
t *

c a

MOVE
a +

b t

CS 412/413 Spring '01 -- Andrew MyersLecture 27 8

Converting back to tree
• Convert quadruples to simple trees
• Look for temporaries in statement 

sequence used and defined only once
• Move definition just before use
• Glue tree, eliminating temporary

• Requires dataflow analyses to do right (reaching 
definitions, available expressions)

t = c * a
…

a = b + t
MOVE(a, +(b,*(c,a)))

MOVE(t, *(c,a))
…

MOVE(a, +(b,t))

CS 412/413 Spring '01 -- Andrew MyersLecture 27 9

Def & Use

n def[n] use[n]

a = b OP c a b,c
a = [b] a b
[a] = b a, b
goto L
if a goto L1 else goto L2 a
L:
a = f(…) a …
f(…) …

CS 412/413 Spring '01 -- Andrew MyersLecture 27 10

Live variable analysis

• Useful even for IR: dead code elimination

• Output: in[n] and out[n] associated with 
every node n in flowgraph

• Constraints:

in[n] ⊇ use[n]
in[n] ∪ def [n] ⊇ out[n]
out[n]  ⊇ in[n�]   for all successors n� of n

• Dataflow equations:
in[n] = use[n] ∪ (out[n] – def [n])
out[n] = �n� in[n�]

CS 412/413 Spring '01 -- Andrew MyersLecture 27 11

Reaching definitions analysis
• Question: what uses in program does a given 

variable definition reach?
• Used for constant propagation, copy 

propagation
– if only one definition reaches a particular use, can 

replace use by definition
– copy propagation requires that copied value still has 

same value – use available expressions

• Input: flowgraph
• Output: in[n], out[n] is set of nodes defining 

some variable such that defn may reach 
beginning, end of n

CS 412/413 Spring '01 -- Andrew MyersLecture 27 12

Reaching definitions

b = a + 2

c = b*b

b = c + 1

return b*a

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y



3

CS 412/413 Spring '01 -- Andrew MyersLecture 27 13

Gen, kill
• Define: defs(x) is set of nodes defining var x
• Define: gen[n], kill[n]

n gen[n] kill[n]

a = b OP c { n } defs(a) – { n }
a = [b] { n } defs(a) – { n }
[a] = b { } { }
goto L { } { }
if a goto L1 else goto L2 { } { } 
L: { } { }
a = f(…) { n } defs(a) – { n }
f(…) { } { }

CS 412/413 Spring '01 -- Andrew MyersLecture 27 14

Solution Constraints
out[n] ⊇ gen[n]

“A definition made by n at least reaches n’s
output”

in[n�] ⊇ out[n] (if n� is successor of n)
“definitions reach node n� if they exit any
predecessor n”

out[n] ∪ kill[n] = in[n]

“A definition that reaches the input either 
reaches the output or is killed”

CS 412/413 Spring '01 -- Andrew MyersLecture 27 15

Data-flow equations
in[n�] = �n ∈ prev[n�] out[n]

out[n] = gen[n] ∪ (in[n] – kill[n])
• Algorithm: init in[n], out[n] with empty sets, 

apply equations as assignments until no 
progress (usual representation: bit vector)

• Eventually all equations satisfied

• Will terminate because in[n], out[n] can only 
grow, can be no larger than set of all defns

• Finds minimal solution to constraint eqns: 
accurate

CS 412/413 Spring '01 -- Andrew MyersLecture 27 16

Def-use chains 
• Reaching definitions tells which nodes a

def can reach

• If node uses same variable, definition 
affects node (conservatively)

• Def-use (du-) chain: def node + all nodes 
with affected uses

• Use-def (ud-) chain: use node + all  nodes 
with defs that might affect use

CS 412/413 Spring '01 -- Andrew MyersLecture 27 17

du-, ud-chains

b = a + 2

c = b*b

b = c + 1

return a*b*c

W

X

Y

Z

out: W

in: W

out: X, W

in: X, W

out: X, Y

in: X, Y

DU
b:(W→ X), (Y→Z)

c: (X→Y, Z)

UD
b: (X←W), (Z←Y)
c: (Y←X), (Z←X)

CS 412/413 Spring '01 -- Andrew MyersLecture 27 18

Webs
• du-chain, ud-chain intersect if share some use or 

definition

• web : maximal set of intersecting du, ud-chains
– disjoint set union algorithm with path compression: 

computable in nearly linear time

• Same variable may comprise multiple non-
interacting webs: permits more optimization



4

CS 412/413 Spring '01 -- Andrew MyersLecture 27 19

Webs
• Register allocation by webs avoids false 

conflicts

int i;
for (i = 0; i<n; i++) { … }
…
for (i = 0; i<n; i++) { … }

• Two different webs: can allocate i to two 
different registers

no use/def pairs!

CS 412/413 Spring '01 -- Andrew MyersLecture 27 20

Register allocation
1. use reaching definitions to compute all 

related uses and defs

2. compute disjoint webs, rename all 
temporaries to their web names

3. run register allocation as before : fewer 
interfering temporaries

CS 412/413 Spring '01 -- Andrew MyersLecture 27 21

Forward vs. Backward
• Liveness: backward analysis

in[n] = use[n] ∪ (out[n] – def [n])
out[n] = �n�∈ succ[n] in[n�]

• Reaching definitions: forward analysis
out[n] = gen[n] ∪ (in[n] – kill[n])

in[n�] = �n ∈ prev[n�] out[n]

CS 412/413 Spring '01 -- Andrew MyersLecture 27 22

Dataflow analysis
• Many dataflow analyses characterized 

simply by
– forward vs. backward analysis

– gen[n]

– kill[n]

– Use of intersection vs. union when combining 
data from several nodes (operator �)

out[n] = gen[n] ∪ (in[n] – kill[n])
in[n�] = �n ∈ prev[n�] out[n]

CS 412/413 Spring '01 -- Andrew MyersLecture 27 23

Available expressions
• Idea: want to perform common

subexpression elimination

• Transformation is safe if original x+1 is an 
available expression (still computes same value)

a = x+1
…

b = x+1

a = x+1
…

b = a

CS 412/413 Spring '01 -- Andrew MyersLecture 27 24

Dataflow values 
• Let in[n], out[n] be sets of nodes whose 

computed expression is available at n
n gen[n] kill[n]

a=b OP c {n} – kill[n] uses(a)

a=[b] {n} – kill[n] uses(a)

[a]=b {} uses([x])
(for all x that may be equal to a)

a=f(b1,…bn) {} uses([x]) (for all x)

other {} {}



5

CS 412/413 Spring '01 -- Andrew MyersLecture 27 25

Constraints
out[n] ⊇ gen[n]

“An expression made available by n at least 
reaches n’s output”

in[n�] ⊆ out[n] (if n� is succ. of n)
“An expression is available at n� only if it is 
available at every predecessor n”

out[n] ∪ kill[n] ⊇ in[n]

“An expression available on input is either 
available on output or killed”

CS 412/413 Spring '01 -- Andrew MyersLecture 27 26

Dataflow equations
out[n] ⊇ gen[n]
in[n�] ⊆ out[n] (if n� is succ. of n)
out[n] ∪ kill[n] ⊇ in[n]

Equations for iterative solution:
out[n] = gen[n] ∪ (in[n] – kill[n])
in[n�] =  �n ∈ pred[n�] out[n]

�=� Starting condition:

in[n] is set of all nodes
in[start]= Ø

CS 412/413 Spring '01 -- Andrew MyersLecture 27 27

Summary
• Tree IR makes dataflow more difficult

• Saw reaching definitions, available 
expressions analyses

• How to use reaching definitions for better 
register allocations via webs

• Next time: a theory to explain why 
iterative solving works


