

Need for dataflow analysis

- Most optimizations require program analysis to determine safety
- This lecture: dataflow analysis

CS 412/413 Spring '01 -- Andrew Myers

Lecture 27

Standard program analysis framework

Dataflow analyses

- Live variable analysis register allocation, dead-code elimination
- **Reaching definitions**: what points in program does each variable definition reach? copy, constant propagation
- Available expressions: which expressions computed earlier still have same value? — common sub-expression elimination

Lecture 27 CS 412/413 Spring '01 -- Andrew Myers

Quadruples

- Quadruple sequence is control flow graph (flowgraph)
- Nodes in graph: quadruples (not assembly statements)
- Edges in graph: ways to transfer control between quadruples (including fall-through)
- For node *n*, *use*[*n*] is variables used, *def*[*n*] is variables defined (assigned)
- Can generate directly from AST

IR optimization AST Canonical IR __ flatten Quadruples (flowgraph) convert basic blocks to instruction analyze, tree form selection optimize Quadruples Abstract assembly register analyze, allocation optimize Assembly code Lecture 27 CS 412/413 Spring '01 -- Andrew Myers

Def & Use			
п	def[n]	use[n]	
a = b OP c a = [b] [a] = b goto L	a a	b,c b a, b	
if a goto L1 else goto L2 L: a = f() f()	а	a 	
		9	
Lecture 27 CS 412/413 Spring '01 Andrew Myers			

Data-flow equations *in*[*n'*] = ∪_{n∈ prev[n'] *out*[*n*] *out*[*n*] = *gen*[*n*] ∪ (*in*[*n*] − *kill*[*n*]) Algorithm: init *in*[*n*], *out*[*n*] with empty sets, apply equations as assignments until no progress (usual representation: bit vector) Algorithm: all equations satisfied Will terminate because *in*[*n*], *out*[*n*] can only grow, can be no larger than set of all defns Finds minimal solution to constraint eqns: accurate}

Constraints

$out[n] \supseteq gen[n]$

"An expression made available by *n* at least reaches *n*'s output"

in[*n'*] ⊆ *out*[*n*] (if *n'* is succ. of *n*)
"An expression is available at *n'* only if it is available at *every* predecessor *n*"

$\textit{out}[n] \cup \textit{kill}[n] \supseteq \textit{in}[n]$

"An expression available on input is either available on output or killed"

Lecture 27 CS 412/413 Spring '01 -- Andrew Myers

25

Dataflow equations

 $out[n] \supseteq gen[n]$ $in[n'] \subseteq out[n]$ (if n' is succ. of n) $out[n] \cup kill[n] \supseteq in[n]$ Equations for iterative solution: $out[n] = gen[n] \cup (in[n] - kill[n])$ $in[n'] = \bigcap_{n \in pred[n']} out[n]$ $\square = \bigcap$ Starting condition: in[n] is set of *all* nodes $in[start] = \emptyset$

26

Lecture 27 CS 412/413 Spring '01 -- Andrew Myers

Summary

- Tree IR makes dataflow more difficult
- Saw reaching definitions, available expressions analyses
- How to use reaching definitions for better register allocations via webs
- *Next time:* a theory to explain why iterative solving works

Lecture 27 CS 412/413 Spring '01 -- Andrew Myers

27