
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 26: Register Allocation

4 Apr 01

CS 412/413 Spring '01 -- Andrew MyersLecture 26 2

Administration
• Programming Assignment 4 due now

• Programming Assignment 5 available 
online

• Iota+ language definition online

• Prelim 2 Tuesday, April 17, 7:30-9:30

CS 412/413 Spring '01 -- Andrew MyersLecture 26 3

Review
• Want to replace all variables (including 

temporaries) with some fixed set of 
registers if possible

• First: need to know which variables are 
live after each instruction

• Two simultaneously live variables cannot 
be allocated to same register

CS 412/413 Spring '01 -- Andrew MyersLecture 26 4

Register allocation
• For every node n in CFG now have out[n] : 

which variables (temporaries) are live on 
exit from node.

• If two variables are in same live set, can’t 
be allocated to the same register – they 
interfere with each other

• How do we assign registers to variables?

CS 412/413 Spring '01 -- Andrew MyersLecture 26 5

Inference Graph
• Nodes of graph: variables

• Edges connect all
variables that interfere
with each other

• Register assignment is graph coloring

a

b c

eax

ebx

a
a,b
a,c
a,b

b = a + 2;
c = b*b;
b = c + 1;
return b*a;

CS 412/413 Spring '01 -- Andrew MyersLecture 26 6

Graph Coloring
• Questions:

– Can we efficiently find a coloring of the graph 
whenever possible?

– Can we efficiently find the optimum coloring 
of the graph?

– How can we choose registers to avoid mov
instructions?

– What do we do when there aren’t enough 
colors (registers) to color the graph?



2

CS 412/413 Spring '01 -- Andrew MyersLecture 26 7

Coloring a Graph
• Kempe’s algorithm [1879] for finding a K-

coloring of a graph: (Assume K=3)

• Step 1: find some node with at most K-1 
edges and cut it out of graph (simplify)

CS 412/413 Spring '01 -- Andrew MyersLecture 26 8

Kempe’s Algorithm
• Once coloring is found for simplified graph, 

selected node can be colored using free color

• Step 2: simplify until graph contain no nodes, 
unwind adding nodes back & assigning colors

CS 412/413 Spring '01 -- Andrew MyersLecture 26 9

Failure of heuristic
• If graph cannot be colored, it will reduce to a 

graph in which every node has at least K 
neighbors

• May happen even if graph is colorable in K!

• Finding K-coloring is NP-hard problem 
(requires search)

?

CS 412/413 Spring '01 -- Andrew MyersLecture 26 10

Spilling
• Once all nodes have K or more neighbors, pick a 

node and mark it for spilling (storage on 
stack). Remove it from graph, continue as before

• Try to pick node not used much, not in inner 
loop

x

CS 412/413 Spring '01 -- Andrew MyersLecture 26 11

Optimistic Coloring
• Spilled node may be K-colorable; when assigning colors, 

try to color it and only spill if necessary.

• If not colorable, record this node as one to be spilled, 
assign it a stack location and keep coloring

x

CS 412/413 Spring '01 -- Andrew MyersLecture 26 12

Accessing spilled variables
• Need to generate additional instructions 

to get spilled variables out of stack and 
back in again

• Naive approach: always keep extra 
registers handy for shuttling data in and 
out. Problem: uses up 3 registers! 

• Better approach: rewrite code introducing 
a new temporary, rerun liveness analysis 
and register allocation 



3

CS 412/413 Spring '01 -- Andrew MyersLecture 26 13

Rewriting code
add t1, t2

• Suppose that t2 is selected for spilling and 
assigned to stack location [ebp-24]

• Invent new variable t35 for just this 
instruction, rewrite:

mov t35, [ebp - 24]
add t1, t35

• Advantage: t35 doesn’t interfere with as 
much as t2 did. Now rerun algorithm; 
fewer or no variables will spill.

CS 412/413 Spring '01 -- Andrew MyersLecture 26 14

Precolored nodes
• Some variables are pre-assigned to 

registers

• mul instruction has
use(n) = eax, def (n) = { eax, edx }

• call instruction kills caller-save regs:
def (n) = { eax, ecx, edx }

• To properly allocate registers, treat these 
register uses as special temporary 
variables and enter into interference graph 
as precolored nodes

CS 412/413 Spring '01 -- Andrew MyersLecture 26 15

Simplifying graph with
precolored nodes

• Can’t simplify graph by removing a pre-
colored node

• Precolored nodes: starting point of 
coloring process

• Once simplified graph is all colored 
nodes, add other nodes back in and 
color them

CS 412/413 Spring '01 -- Andrew MyersLecture 26 16

Optimizing mov instructions
• Code generation produces a lot of extra 

mov instructions

mov t5, t9
• If we can assign t5 and t9 to same register, 

we can get rid of the mov

• Idea: if t5 and t9 are not connected in 
inference graph, coalesce them into a 
single variable. mov will be redundant.

CS 412/413 Spring '01 -- Andrew MyersLecture 26 17

Coalescing
• Problem: coalescing two nodes can make the 

graph uncolorable

• High-degree nodes can make graph harder to 
color, even impossible

• Avoid creation of high-degree (>K) nodes 
(conservative coalescing)

t5 t9 t5/t9

CS 412/413 Spring '01 -- Andrew MyersLecture 26 18

Simplification + Coalescing
• Start by simplifying as much as possible without 

removing nodes that are either the source or 
destination of a mov (move-related nodes)

• Coalesce some pair of move-related nodes as 
long as low-degree node results; delete 
corresponding mov instruction(s)

• If can neither simplify nor coalesce, take a move-
related pair and freeze the mov instruction, do 
not consider nodes move-related



4

CS 412/413 Spring '01 -- Andrew MyersLecture 26 19

High-level algorithm

Simplify, coalesce,
and freeze

Spill node if
necessary

Color graph
optimistically

Rewrite code
if necessary

CS 412/413 Spring '01 -- Andrew MyersLecture 26 20

Summary
• Register allocation pseudo-code in Appel, 

Chapter 11

• Now have seen all the machinery needed 
to produce acceptable code

• Still not up to level of reasonably good 
optimizing compilers

• Next few lectures: optimizations, analyses 
allowing performance to approach or 
surpass assembly-coded programs 


