
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 25: Live Variable Analysis

2 Apr 01

CS 412/413 Spring '01 -- Andrew MyersLecture 25 2

Administration

• Programming Assignment 4 due this
Friday

CS 412/413 Spring '01 -- Andrew MyersLecture 25 3

Outline

• Register allocation problem

• Liveness

• Liveness constraints

• Solving dataflow equations

• Interference graphs

CS 412/413 Spring '01 -- Andrew MyersLecture 25 4

Problem
• Abstract assembly contains arbitrarily

many registers ti

• Want to replace all such nodes with
register nodes for e[a-d]x, e[sd]i, (ebp)

• Local variables allocated to TEMP’s too

• Only 6-7 usable registers: need to allocate
multiple ti to each register

• For each statement, need to know which
variables are live to reuse registers

CS 412/413 Spring '01 -- Andrew MyersLecture 25 5

Using scope
• Observation: temporaries, variables have

bounded scope in program

• Simple idea: use information about program
scope to decide which variables are live

• Problem: overestimates liveness

b is live
c is live, b is not

what is live here?

{ int b = a + 2;
int c = b*b;
int d = c + 1;
return d; }

CS 412/413 Spring '01 -- Andrew MyersLecture 25 6

Live variable analysis
• Goal: for each statement, identify which

temporaries are live

• Analysis will be conservative (may over-
estimate liveness, will never under-
estimate)

• But more precise than simple scope
analysis (will estimate fewer live
temporaries)

2

CS 412/413 Spring '01 -- Andrew MyersLecture 25 7

Control Flow Graph
• Canonical IR forms control flow graph (CFG) :

statements are nodes; jumps, fall-throughs are
edges

MOVE

EXP

CJUMP

JUMP

fall-through edges

out-edges

in-edges

CS 412/413 Spring '01 -- Andrew MyersLecture 25 8

Liveness
• Liveness is associated with edges of

control flow graph, not nodes (statements)

• Same register can be used for different
temporaries manipulated by one stmt

live: a, c, e

live: b, c

CS 412/413 Spring '01 -- Andrew MyersLecture 25 9

Example
a = b + 1

MOVE(TEMP(ta), TEMP(tb) + 1)

mov ta, tb
add ta, 1

Register allocation: ta ⇒ eax, tb ⇒ eax
mov eax, eax
add eax, 1

Live: tb
mov ta, tb
add ta,1

Live: ta (maybe)

CS 412/413 Spring '01 -- Andrew MyersLecture 25 10

Use/Def
• Every statement uses some set of variables

(read from them) and defines some set of
variables (writes to them)

• For statement s define:
– use[s] : set of variables used by s

– def [s] : set of variables defined by s

• Example:
a = b + c use = b,c def = a
a = a + 1 use = a def = a

CS 412/413 Spring '01 -- Andrew MyersLecture 25 11

Liveness
Variable v is live on edge e if:

There is
– a node n in the CFG that uses it and

– a directed path from e to n passing through no
def

How to compute efficiently?

How to use?

CS 412/413 Spring '01 -- Andrew MyersLecture 25 12

Simple algorithm: Backtracing

“variable v is live on edge e if there is a node n in
CFG that uses it and a directed path from e to n
passing through no def ”

Algorithm: Try all paths from each use of a
variable, tracing backward in the control flow
graph until a def node or previously visited node
is reached. Mark variable live on each edge
traversed.

3

CS 412/413 Spring '01 -- Andrew MyersLecture 25 13

Dataflow Analysis
• Idea: compute liveness for all variables

simultaneously

• Approach: define equations that must be
satisfied by any liveness determination

• Solve equations by iteratively converging
on solution

• Instance of general technique for
computing program properties: dataflow
analysis

CS 412/413 Spring '01 -- Andrew MyersLecture 25 14

Dataflow values
use[n] : set of variables used by n

def [n] : set of variables defined by n

in[n] : variables live on entry to n

out[n] : variables live on exit from n

Clearly: in[n] ⊇ use[n]

What other constraints are there?

CS 412/413 Spring '01 -- Andrew MyersLecture 25 15

Dataflow constraints
in[n] ⊇ use[n]

– A variable must be live on entry to n if it is
used by the statement itself

in[n] ⊇ out[n] – def [n]
– If a variable is live on output and the

statement does not define it, it must be live on
input too

out[n] ⊇ in[n’] if n’ ∈ succ [n]
– if live on input to n’, must be live on output

from n

CS 412/413 Spring '01 -- Andrew MyersLecture 25 16

Iterative dataflow analysis
• Initial assignment to in[n], out[n] is empty set Ø

: will not satisfy constraints
in[n] ⊇ use[n]

in[n] ⊇ out[n] – def [n]

out[n] ⊇ in[n’] if n’ ∈ succ [n]

• Idea: iteratively re-compute in[n], out[n] when
forced to by constraints. Live variable sets will
increase monotonically.

• Dataflow equations:

in’[n] = use[n] ∪ (out[n] – def [n])
out’[n] = ∪ n’ ∈ succ[n] in[n’]

CS 412/413 Spring '01 -- Andrew MyersLecture 25 17

Complete algorithm
for all n, in[n] = out[n] = Ø
repeat until no change

for all n

out[n] = ∪n’ ∈ succ[n] in[n’]
in[n] = use[n] ∪ (out[n] – def[n])

end
end

• Finds fixed point of in, out equations
• Problem: does extra work recomputing in, out

values when no change can happen

CS 412/413 Spring '01 -- Andrew MyersLecture 25 18

• For simplicity: pseudo-code

Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: x
use: e
def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8

4

CS 412/413 Spring '01 -- Andrew MyersLecture 25 19

Example

e=1

if x>0

z=e*e

y=e*x

e=z

if x&1

e=y

return x

def: e

use: x

use: x
use: e
def: z

use: e, x
def: y

use: z
def: e

use: x

use: y
def: e

1

2

3 4

5

6

7
8

2: in={x}
3: in={e}
4: in={x}
5: in={e,x}
6: in={x}
7: out={x}, in={x,z}
8: out={x}, in={x,y}
1: out={x}, in={x}
2: out={e,x}, in={e,x}
3: out={e,x}, in={e,x}
5: out={x}, in={e,x}
6: out={x,y,z}, in={x,y,z}
7: out={e,x}, in={x,z}
8: out={e,x}, in={x,y}
1: out={e,x}, in={x}
5: out={x,y,z}, in={e,x,z}
3: out={e,x,z}, in={e,x}
all equations satisfied

CS 412/413 Spring '01 -- Andrew MyersLecture 25 20

Faster algorithm
• Information only propagates between

nodes because of this equation:

out[n] = ∪n’ ∈ succ [n] in[n’]

• Node is updated from its successors
– If successors haven’t changed, no need to

apply equation for node

– Should start with nodes at “end” and work
backward

CS 412/413 Spring '01 -- Andrew MyersLecture 25 21

Worklist algorithm
• Idea: keep track of nodes that might need to be

updated in worklist : FIFO queue
for all n, in[n] = out[n] = Ø
w = { set of all nodes }
repeat until w empty

n = w.pop()
out[n] = ∪n’ ∈ succ [n] in[n’]
in[n] = use[n] ∪ (out[n] — def [n])
if change to in[n],

for all predecessors m of n, w.push(m)
end

CS 412/413 Spring '01 -- Andrew MyersLecture 25 22

Register allocation
• For every node n in CFG now have out[n] :

which variables (temporaries) are live on
exit from node.
– Also consider in[start]

• If two variables are in same live set, can’t
be allocated to the same register –they
interfere with each other

• How do we assign registers to variables?

CS 412/413 Spring '01 -- Andrew MyersLecture 25 23

Interference graph
• Undirected graph of variables

• Construct graph with one node for every
variable

• Add edge between every two variables that
interfere with each other

b = a + 2;
c = b*b;
b = c + 1;
return b*a;

a
a,b
a,c
a,b

a

b c

CS 412/413 Spring '01 -- Andrew MyersLecture 25 24

Graph coloring
• Problem: assign a register to every node in

graph, but connected nodes cannot be
given the same register

• Graph coloring problem : can we color
the interference graph using 6-7 colors?

a

b c

eax

ebx

5

CS 412/413 Spring '01 -- Andrew MyersLecture 25 25

Summary
• Live variable analysis tells us which

variables we need to have values for at
various points in program

• Liveness can be computed by backtracing
or by dataflow analysis

• Dataflow analysis finds solution iteratively
by converging on solution

• Register allocation is coloring of
interference graph

