
1

CS 412
Introduction to Compilers

Andrew Myers

Cornell University

Lecture 22: Implementing Objects
26 Mar 01

CS 412/413 Spring '01 -- Andrew MyersLecture 22 2

Classes
• Components

– fields/instance variables
• values may differ from object to object
• usually mutable

– methods
• values shared by all objects of a class
• inherited from superclasses
• usually immutable
• usually function values with implicit argument:

object itself (this/self)
– all components have visibility:

public/private/protected (subclass visible)

CS 412/413 Spring '01 -- Andrew MyersLecture 22 3

Implementing classes
• Environment binds type names to type

objects, i.e. class objects
– Java: class object visible in programming

language (java.lang.Class)

• Class objects are environments:
– identifier bound to type

+expression (e.g. method body)

+field/method

+static/non-static

+visibility

CS 412/413 Spring '01 -- Andrew MyersLecture 22 4

Code generation for objects

• Methods
– Generating method code

– Generating method calls (dispatching)

• Fields
– Memory layout

– Generating accessor code

– Packing and alignment

CS 412/413 Spring '01 -- Andrew MyersLecture 22 5

Compiling methods
• Methods look like functions, are type-

checked like functions…what is different?

• Argument list: implicit receiver argument

• Calling sequence: use dispatch vector
instead of jumping to absolute address

CS 412/413 Spring '01 -- Andrew MyersLecture 22 6

norm
code

The need for dispatching
• Problem: compiler can’t tell what code to

run when method is called
interface Point { int getx(); float norm(); }
class ColoredPoint implements Point {…

float norm() { return sqrt(x*x+y*y); }
class 3DPoint implements Point { …

float norm() return sqrt(x*x+y*y+z*z); }

• Solution: dispatch
vector (dispatch
table, selector table…)

norm
getx

2

CS 412/413 Spring '01 -- Andrew MyersLecture 22 7

C

Method dispatch
• Idea: every method has its own small

integer index

• Index is used to look up method in
dispatch vector

interface A {
void foo(); 0

}
interface B extends A {

void bar(); 1
void baz(); 2

}

class C implements B {
void foo() {…}
void bar() {…}
void baz() {…}
void quux() {…} 3

}

A

B

CS 412/413 Spring '01 -- Andrew MyersLecture 22 8

Dispatch vector layouts

A foo

B bar,baz

C quux

foo

A

foo

B bar
baz

foo

C bar
baz
quux

CS 412/413 Spring '01 -- Andrew MyersLecture 22 9

Method arguments
• Methods have a special variable (in Java, “this”) called

the receiver object

• Historically (Smalltalk): method calls thought of as
messages sent to receivers

• Receiver object is (implicit) argument to method

class Shape {
int setCorner(int which, Point p) { … }

}

int setCorner(Shape this, int which, Point p) { … }

compiled like

How do we know the type of “this”?
CS 412/413 Spring '01 -- Andrew MyersLecture 22 10

Calling sequence

Function Method
e.baz(…)

CALL
MEM

+
i *4

foo
bar
baz
quux

f(...)

ESEQ

E �e�

MOVE

to

to

to …

(i = 2)

CALL

NAME(f) …

MEM

CS 412/413 Spring '01 -- Andrew MyersLecture 22 11

Example

b.bar(3);

push 3
push eax
mov ebx, [eax]
mov ecx, [ebx + 4] (i=1)
call ecx

A foo

B bar,baz

C quux

bar
bar
code

eax ebx ecx

CS 412/413 Spring '01 -- Andrew MyersLecture 22 12

Inheritance
• Three traditional components of object-

oriented languages
– abstraction/encapsulation/information

hiding

– subtyping/interface inheritance -- interfaces
inherit method signatures from supertypes

– inheritance/implementation inheritance -- a
class inherits signatures and code from a
superclass (possibly “abstract”)

3

CS 412/413 Spring '01 -- Andrew MyersLecture 22 13

Inheritance
• Method code copied down from superclass

if not overridden by subclass

• Fields also inherited (needed by inherited
code in general)

• Fields checked just as for records: mutable
fields must be invariant, immutable fields
may be covariant

CS 412/413 Spring '01 -- Andrew MyersLecture 22 14

Object Layout
class Shape {
Point LL, UR;
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {
Color c;
void setColor(Color c_);

}

LL: Point
UR: Point

DV setCorner

LL: Point
UR: Point

DV setCorner

c: Color

setColor

Shape ColoredRect

CS 412/413 Spring '01 -- Andrew MyersLecture 22 15

Code Sharing

LL: Point
UR: Point

DV setCorner

LL: Point
UR: Point

DV setCorner

c: Color

setColor

Machine code for
Shape.setCorner

• Don’t actually
have to copy code!

• Works with separate
compilation: can
inherit without
superclass source

CS 412/413 Spring '01 -- Andrew MyersLecture 22 16

Field Offsets
class Shape {
Point LL /* 4 */ , UR; /* 8 */
void setCorner(int which, Point p);

}
class ColoredRect extends Shape {
Color c; /* 12 */
void setColor(Color c_);

}

• Offsets of fields from beginning known statically, same
for all subclasses

• Accesses to fields are indexed loads

ColoredRect x;
E �x.c� = MEM(E �x� + 12)
E �x.UR� = MEM(E �x� + 8)

CS 412/413 Spring '01 -- Andrew MyersLecture 22 17

Field Alignment
• In many processors, a 32-bit load must be to an

address divisible by 4, address of 64-bit load
must be divisible by 8

• In rest (e.g. Pentium), loads are 10× faster if
aligned -- avoids extra load

� Fields should be aligned

struct {
int x; char c; int y; char d;
int z; double e;

}

x
c

y
d

z

e
CS 412/413 Spring '01 -- Andrew MyersLecture 22 18

Interfaces, abstract classes
• Classes define a type and some values

(methods)
• Interfaces are pure object types : no

implementation
– no dispatch vector: only a DV layout

• Abstract classes are halfway:
– define some methods
– leave others unimplemented
– no objects (instances) of abstract class

• DV needed only for real classes

4

CS 412/413 Spring '01 -- Andrew MyersLecture 22 19

Static methods
• In Java, can declare methods static -- they

have no receiver object

• Called exactly like normal functions
– don’t need to enter into dispatch vector

– don’t need implicit extra argument for
receiver

• Treated as methods as way of getting
functions inside the class scope (access to
module internals for semantic analysis)

• Not really methods
CS 412/413 Spring '01 -- Andrew MyersLecture 22 20

Constructors
• Java, C++: classes can declare object

constructors that create new objects:
new C(x, y, z)

• Other languages (Modula-3, Iota+): objects
constructed by “new C”; no initialization code

class LenList {
int len, head; List next;
LenList() { len = 0; }

}

LenList$constr: mov eax, [esp + 8]
mov [eax+4], 0
ret
…
push 16 ; 3 fields + DV
call GC_malloc
mov [eax], LenList_DV
push eax
call LenList$constructor

Compiling constructors
• Compiled just like static methods except:

– pseudo-variable “this” is in scope as in methods
– this is initialized with newly allocated memory
– first word in memory initialized to point to DV
– value of this is return value of code

LenList() { len = 0; }

_DATA SEGMENT
LenList_DV DWORD LenList$first

DWORD LenList$rest
DWORD LenList$length

_DATA ENDS

CS 412/413 Spring '01 -- Andrew MyersLecture 22 22

Summary
• Method dispatch accomplished using dispatch

vector, implicit method receiver argument

• No dispatch of static methods needed

• Inheritance causes extension of fields as well as
methods; code can be shared

• Field alignment: declaration order matters!

• Each real class has a single dispatch vector in
data segment: installed at object creation or
constructor

