CS412/413

Introduction to
Compilers and Translators
Spring ’01

Lecture 1: Overview

Outline

« About this course

« Introduction to compilers
—What are compilers?
—Why should we learn about them?
— Anatomy of a compiler

« Introduction to lexical analysis
— Text stream to tokens

CS 412/413 Introduction to Compilers

Course Information

MWF 10:10 - 11:00AM in Phillips 203
Faculty: Andrew Myers

Teaching Assistants: Michael Clarkson,
Sunny Gleason, Lantian Zheng

E-mail: cs412@cs.cornell.edu

Web page:
http://www.cs.cornell.edu/courses/cs412

Newsgroup: cornell.class.cs412

CS 412/413 Introduction to Compilers

CS 413 is required!

CS 412/413 Introduction to Compilers

Textbooks

Required text
— Modern Compiler Implementation in Java. Andrew Appel.
Optional texts

— Compilers -- Principles, Techniques and Tools. Aho, Sethi
and Ullman (The Dragon Book)

— Advanced Compiler Design and Implementation. Steve
Muchnick.

Java reference

— Java Language Specification. James Gosling, Bill Joy, and
Guy Steele.

All are on reserve in Engineering Library

CS 412/413 Introduction to Compilers

Work

« Homeworks: 4, 20% total
-5/5/5/5
» Programming Assignments: 6, 50%
-5/7/8/10/10/10
« Exams: 2 prelims, 30%
—-15/15
—No final exam

CS 412/413 Introduction to Compilers

Homeworks

+ Three assignments in first half of
course; one homework in second half

« Not done in groups—you may discuss
with others but do your own work

— Write down who you discussed problems
with

CS 412/413 Introduction to Compilers 7

Projects

« Six programming assignments
« Groups of 3-4 students
— same grade for all
+ Group information due Friday
—we will respect consistent preferences

Java will be implementation language

CS 412/413 Introduction to Compilers 8

Assignments
 Due at beginning of class
 Late homeworks, programming
assignments increasingly penalized
—1day: 5%, 2 days: 15%, 3 days: 30%, 4
days: 50%
—weekend = 1 day

— Extensions often granted, but must be
approved 2 days in advance

« Project files turned in to CSUGLAB
directory

CS 412/413 Introduction to Compilers 9

Why take this course?

» CS412 is an elective course

« Expect to learn:
— practical applications of theory
— parsing
— deeper understanding of code
— manipulation of complex data structures

— how high-level languages are implemented in
machine language

— alittle programming language semantics
— Intel x86 architecture, Java
— how to be a better programmer (esp. in groups)

CS 412/413 Introduction to Compilers 10

What are Compilers?

« Translators from one representation of
a program to another

« Typically: high-level source code to
machine language (object code)
» Not always

—Java compiler: Java to interpretable
bytecodes

—Java JIT: bytecode to executable image

CS 412/413 Introduction to Compilers 11

Source Code

+ Source code: optimized for human readability
— expressive: matches human notions of grammar
— redundant to help avoid programming errors
— computation possibly not fully determined by code

int expr(int n)
int 4;

d=4*n*n* (n+1) * (n+ 1);
return d4;

CS 412/413 Introduction to Compilers 12

Machine code

« Optimized for hardware
— Redundancy, ambiguity reduced
— Information about intent lost
— Assembly code = machine code

CS 412/413 Introduction to Compilers 13

How to translate?

«+ Source code and machine code
mismatch
« Some languages farther from machine
code than others (“higher-level”)
» Goal:
—source-level expressiveness for task
—best performance for concrete computation
—reasonable translation efficiency (< O(n3))
—maintainable code

CS 412/413 Introduction to Compilers 14

Example (Output assembly code)

Unoptimized Code Optimized Code

s4addg $16,0,$0
mull $16,$0,%0

ret $31, ($26),1

CS 412/413 Introduction to Compilers 15

Correctness

« Programming languages describe
computation precisely
« Therefore: translation can be precisely
described (a compiler can be correct)
« Correctness is very important!
— hard to debug programs with broken compiler...
- non-triYiaI: programming languages are
expressive
— implications for development cost, security

— this course: techniques for building correct
compilers

CS 412/413 Introduction to Compilers 16

How to translate effectively?

‘ High-level source code ‘

Low-level machine code

CS 412/413 Introduction to Compilers 17

Idea: Translate in Steps

« Series of program representations

« Intermediate representations optimized
for program manipulations of various
kinds (checking, optimization)

« More machine-specific, less language-
specific as translation proceeds

CS 412/413 Introduction to Compilers 18

Simplified Compiler Structure

Source code
(character stream) ¥

if(b==0)a=b; Lexical analysis

Token stream

Front end
(machine-independent)
Abstract syntax tree

l Intermediate Code Generation ‘

Intermediate code

ssembly code ode generation ine-
CMP CX, 0 g (machine-dependent)
CMOVZ DX,CX

CS 412/413 Introduction to Compilers 19

Big picture

Source code

Assembly code

Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image
CS 412/413 Introduction to Compilers 20

Schedule

« Detailed schedule on web page, with links

Lexical analysis and parsing: 6
Semantic analysis: 5
Intermediate code: 4
Prelim #1

Code generation: 3
Separate compilation and objects: 4
Optimization: 8
Prelim #2

Run-time, link-time support: 2
Advanced topics: 7

CS 412/413 Introduction to Compilers 21

First step: Lexical Analysis

Source code
(character stream)

Lexical analysis

Token stream

Abstract syntax tree

l Intermediate Code Generation ‘

Intermediate code

Code generation

Assembly code
CS 412/413 Introduction to Compilers 2

What is Lexical Analysis?

« Converts character stream to token
stream of pairs (token type, attribute)
if (x1*x2<1.0) {
y =x1;
3

Lilel Tl ol [+ [x[a]<[1].[o[)]t]w]

‘v
[xt][#][1a: x2][<] [vum: z.0] [y][] [1e: y]
23

CS 412/413 Introduction to Compilers

Token stream

« Gets rid of whitespace, comments
+ Only (Token type, attribute):
(Id, “x”), (Float, 1.0e0)
+ Token location preserved for debugging, error
messages (source file, line number)
(1d, “x”, “Main.java”, 542)

+ Issues:
— how to specify tokens?
— how to implement tokenizer/lexer

CS 412/413 Introduction to Compilers 24

