
1

CS412/413

Introduction to

Compilers and Translators

Spring ’01

Lecture 1: Overview

CS 412/413 Introduction to Compilers 2

Outline

• About this course

• Introduction to compilers
– What are compilers?

– Why should we learn about them?

– Anatomy of a compiler

• Introduction to lexical analysis
– Text stream to tokens

CS 412/413 Introduction to Compilers 3

Course Information

• MWF 10:10 - 11:00AM in Phillips 203

• Faculty: Andrew Myers

• Teaching Assistants: Michael Clarkson,
Sunny Gleason, Lantian Zheng

• E-mail: cs412@cs.cornell.edu
• Web page:

http://www.cs.cornell.edu/courses/cs412

• Newsgroup: cornell.class.cs412

CS 412/413 Introduction to Compilers 4

CS 413 is required!

CS 412/413 Introduction to Compilers 5

Textbooks
• Required text

– Modern Compiler Implementation in Java. Andrew Appel.

• Optional texts
– Compilers -- Principles, Techniques and Tools. Aho, Sethi

and Ullman (The Dragon Book)

– Advanced Compiler Design and Implementation. Steve
Muchnick.

• Java reference
– Java Language Specification. James Gosling, Bill Joy, and

Guy Steele.

• All are on reserve in Engineering Library

CS 412/413 Introduction to Compilers 6

Work

• Homeworks: 4, 20% total
– 5/5/5/5

• Programming Assignments: 6, 50%
– 5/7/8/10/10/10

• Exams: 2 prelims, 30%
– 15/15

– No final exam

2

CS 412/413 Introduction to Compilers 7

Homeworks

• Three assignments in first half of
course; one homework in second half

• Not done in groups—you may discuss
with others but do your own work
– Write down who you discussed problems

with

CS 412/413 Introduction to Compilers 8

Projects

• Six programming assignments

• Groups of 3-4 students
– same grade for all

• Group information due Friday
– we will respect consistent preferences

• Java will be implementation language

CS 412/413 Introduction to Compilers 9

Assignments
• Due at beginning of class
• Late homeworks, programming

assignments increasingly penalized
– 1 day: 5%, 2 days: 15%, 3 days: 30%, 4

days: 50%
– weekend = 1 day
– Extensions often granted, but must be

approved 2 days in advance

• Project files turned in to CSUGLAB
directory

CS 412/413 Introduction to Compilers 10

Why take this course?
• CS412 is an elective course
• Expect to learn:

– practical applications of theory
– parsing
– deeper understanding of code
– manipulation of complex data structures
– how high-level languages are implemented in

machine language
– a little programming language semantics
– Intel x86 architecture, Java
– how to be a better programmer (esp. in groups)

CS 412/413 Introduction to Compilers 11

What are Compilers?

• Translators from one representation of
a program to another

• Typically: high-level source code to
machine language (object code)

• Not always
– Java compiler: Java to interpretable

bytecodes

– Java JIT: bytecode to executable image

CS 412/413 Introduction to Compilers 12

Source Code
• Source code: optimized for human readability

– expressive: matches human notions of grammar

– redundant to help avoid programming errors

– computation possibly not fully determined by code

int expr(int n)
{

int d;
d = 4 * n * n * (n + 1) * (n + 1);
return d;

}

3

CS 412/413 Introduction to Compilers 13

Machine code

• Optimized for hardware
– Redundancy, ambiguity reduced

– Information about intent lost

– Assembly code ≈ machine code

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)

addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1

CS 412/413 Introduction to Compilers 14

How to translate?
• Source code and machine code

mismatch
• Some languages farther from machine

code than others (“higher-level”)
• Goal:

– source-level expressiveness for task
– best performance for concrete computation
– reasonable translation efficiency (< O(n3))
– maintainable code

CS 412/413 Introduction to Compilers 15

Optimized Code
s4addq $16,0,$0
mull $16,$0,$0
addq $16,1,$16
mull $0,$16,$0
mull $0,$16,$0
ret $31,($26),1

Unoptimized Code

Example (Output assembly code)

lda $30,-32($30)
stq $26,0($30)
stq $15,8($30)
bis $30,$30,$15
bis $16,$16,$1
stl $1,16($15)
lds $f1,16($15)
sts $f1,24($15)
ldl $5,24($15)
bis $5,$5,$2
s4addq $2,0,$3
ldl $4,16($15)
mull $4,$3,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
ldl $3,16($15)
addq $3,1,$4
mull $2,$4,$2
stl $2,20($15)
ldl $0,20($15)
br $31,$33

$33:
bis $15,$15,$30
ldq $26,0($30)
ldq $15,8($30)
addq $30,32,$30
ret $31,($26),1

CS 412/413 Introduction to Compilers 16

Correctness
• Programming languages describe

computation precisely
• Therefore: translation can be precisely

described (a compiler can be correct)
• Correctness is very important!

– hard to debug programs with broken compiler…
– non-trivial: programming languages are

expressive
– implications for development cost, security
– this course: techniques for building correct

compilers

CS 412/413 Introduction to Compilers 17

How to translate effectively?

High-level source code

?

Low-level machine code

CS 412/413 Introduction to Compilers 18

Idea: Translate in Steps

• Series of program representations

• Intermediate representations optimized
for program manipulations of various
kinds (checking, optimization)

• More machine-specific, less language-
specific as translation proceeds

4

CS 412/413 Introduction to Compilers 19

CMP CX, 0
CMOVZ DX,CX

Simplified Compiler Structure
Source code
(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree

Intermediate Code Generation

Intermediate code

Code generationAssembly code

Front end
(machine-independent)

Back end
(machine-dependent)

if (b == 0) a = b;

CS 412/413 Introduction to Compilers 20

Big picture
Source code

Compiler
Assembly code

Assembler
Object code
(machine code)

Fully-resolved object
code (machine code)

Executable image

Linker

Loader

CS 412/413 Introduction to Compilers 21

Schedule
• Detailed schedule on web page, with links

Lexical analysis and parsing: 6
Semantic analysis: 5
Intermediate code: 4
Prelim #1
Code generation: 3
Separate compilation and objects: 4
Optimization: 8
Prelim #2
Run-time, link-time support: 2
Advanced topics: 7

CS 412/413 Introduction to Compilers 22

First step: Lexical Analysis
Source code
(character stream)

Lexical analysis

Parsing

Token stream

Abstract syntax tree

Intermediate Code Generation

Code generation
Assembly code

Intermediate code

CS 412/413 Introduction to Compilers 23

What is Lexical Analysis?

• Converts character stream to token
stream of pairs �token type, attribute�

if (x1 * x2<1.0) {
y = x1;

}

i f (x 1 * x 2 < 1 . 0) { \n

if (Id: x1 * Id: x2 < Num: 1.0) { Id: y
CS 412/413 Introduction to Compilers 24

Token stream
• Gets rid of whitespace, comments
• Only � Token type, attribute �:

� � Id, “x” �, � Float, 1.0e0 �

• Token location preserved for debugging, error
messages (source file, line number)
� � Id, “x”, “Main.java”, 542�

• Issues:
– how to specify tokens?
– how to implement tokenizer/lexer

