CS411 Preliminary Examination

October 20, 2004

This exam is closed book. There are 9 questions in the exam. Please write your answers in an exam booklet. Make sure you clearly indicate your final answer for each question.

- 1. [8 pts] Indicate which of the following commands are equivalent:
 - (a) while (b) do c
 - (b) while (b) do (c;c)
 - (c) while (b) do (c; while (b) do c)
 - (d) while (b) do (while (b) do (c;c))
- 2. [12 pts] For each of the following partial correctness assertions, write an appropriate loop invariant that would make it possible to prove its validity:
 - (a) $[6 \text{ pts}] \{i = 1\}$ while (i < 100) do i := i+1 $\{i = 100\}$
 - (b) $[6 \text{ pts}] \{i = 1\}$ while (i < 100) do i := i+2 $\{i = 101\}$
- 3. [8 pts] What are the possible values of n for which the following partial correctness assertion holds?

```
\{x = n\} y := x-1; x := x+1; y := y*x \{x = y+2\}
```

4. [7 pts] Are there any commands c for which the following Hoare-triple holds? If no, explain why. If yes, show an example.

```
\{x > 0\} while (x > 0) do c \{x > 0\}
```

- 5. [18 pts] Suppose we build an analysis for IMP that identifies pairs of variables whose values are off by one. For this, we use an analysis domain: $Abs = Var \times Var \rightarrow \{0, 1, ?\}$. The meaning of Abs is as follows: given $a \in Abs$ and variables x and y, then a(x, y) = 0 if x = y; a(x, y) = 1 if x = y + 1; and a(x, y) = ? if the relation between the values of x and y is not known.
 - (a) [6 pts] What is the most precise information that such an analysis can derive at the end of the following program: x := 0; y := 1; z := x + 1?
 - (b) [12 pts] Show the analysis for assignments of the form x := y + 1. More precisely, given $a \in Abs$ before the assignment, show how to compute the analysis information a' after the assignment. Make sure your analysis result is as accurate as possible.
- 6. [7 pts] What is the set of free variables of $\lambda x.z$ ($\lambda y.y$ x) y?
- 7. [7 pts] What is the result of following substitution: $(\lambda x.y \ (\lambda y.y \ x)) \ [x/y]$?
- 8. [7 pts] Which is true about the evaluation of the following expression: a) call-by-name is faster; b) call-by-value is faster; or c) they both take the same number of evaluation steps?

$$(\lambda x.\lambda y.x \ y \ y) \ ((\lambda x.x)(\lambda x.x)) \ (\lambda x.x)$$

9. [26 pts] Consider the following simple stack language STK:

$$c \in \mathsf{Com} \quad c ::= \mathsf{skip} \mid n \mid x \mid \mathsf{pop} \ x \mid + \mid c_1 \ ; c_2 \mid \mathsf{if} \ c_1 \ c_2 \mid \mathsf{loop} \ c \ n \in \mathsf{Int} \ x \in \mathsf{Var}$$

The execution of the program maintains a store $S: \mathsf{Var} \to \mathsf{Int}$ that maps variables to their values, and a stack T of integers. The empty stack is \emptyset , and (T:n) is a stack obtained by pushing value n on top of stack T. The following rules describe the semantics of this language:

$$\langle n, \ T, \ S \rangle \rightarrow \langle \text{skip}, \ T:n, \ S \rangle \qquad \langle x, \ T, \ S \rangle \rightarrow \langle \text{skip}, \ T:S(x), \ S \rangle$$

$$\frac{n = n_1 + n_2}{\langle +, \ T:n_1:n_2, \ S \rangle \rightarrow \langle \text{skip}, \ T:n, \ S \rangle}$$

$$\frac{\langle c_1, \ T, \ S \rangle \rightarrow \langle c_1', \ T', \ S' \rangle}{\langle c_1; c_2, \ T, \ S \rangle \rightarrow \langle c_1'; c_2, \ T', \ S' \rangle}$$

$$\langle \text{skip}; c, \ T, \ S \rangle \rightarrow \langle c, \ T, \ S \rangle$$

$$\langle \text{skip}; c, \ T, \ S \rangle \rightarrow \langle c, \ T, \ S \rangle$$

$$\frac{n_1 < n_2}{\langle \text{if} \ c_1 \ c_2, \ T:n_1:n_2, \ S \rangle \rightarrow \langle c_2, \ T, \ S \rangle}$$

$$\langle \text{loop} \ c, \ T, \ S \rangle \rightarrow \langle \text{if} \ (c; \text{loop} \ c) \ \text{skip}, \ T, \ S \rangle$$

Final configurations are of the form $\langle skip, T, S \rangle$.

- (a) [7 pts] Identify all of the error configurations in STK.
- (b) [7 pts] Write an error-free STK program that never terminates.
- (c) [12 pts] For each of the following IMP commands, write an equivalent STK command (one that yields the same final store as the IMP command):
 - i. if (x > 0) then x := x + 1 else skip
 - ii. while (x < y) do x := x + 2