CS411 Final Examination

Computer Science Department Cornell University

December 15, 2004

This exam is closed book. There are 10 questions in the exam. Please write your answers in an exam booklet. If a problem requires calculations, make sure you clearly indicate your final answer.

1. [20 pts] Consider that we extend IMP with a switch command:

```
\begin{array}{l} \texttt{switch}\;(e)\;\{\\ \texttt{case}\;v_1\;:\;c_1;\\ \dots\\ \texttt{case}\;v_n\;:\;c_n;\\ \texttt{default}\;:\;c;\\ \} \end{array}
```

Here, e is an integer expression, v_1 , ..., v_n are distinct integer constants, and c_1 , ..., c_n , c are commands. If the value of e matches some v_k , then command c_k is executed; otherwise, the program executes c. The execution doesn't fall-through from one case to the next case.

- (a) [7 pts] Write small-step semantic rules to describe this execution.
- (b) [7 pts] Write a Hoare-rule for the switch command.
- (c) [6 pts] Given an abstract analysis domain Abs, write down the analysis of the switch command $\mathcal{C}'[switch(e) \{...\}]S$, where $S \in Abs$ is the abstract store before the statement. Assume that the domain Abs does not hold enough information to statically determine whether two expressions are equal or different.
- 2. [18 pts] The following questions ask you to compare different language features.
 - (a) [6 pts] Give an advantage of static typing over dynamic typing, and an advantage of dynamic typing over static typing.
 - (b) [6 pts] Why do languages like Pascal or Modula-3 require static (or access) links, but languages like C or C++ don't?
 - (c) [6 pts] In ML you can pass in functions as parameters and return functions. In Pascal or Modula-3, you can only pass in functions, but you can't return them. How does this simplify things?
- 3. [7 pts] We want to translate pairs into options (sum types). To model options, we use the following ML datatype:

```
datatype S = L | R
```

Then, we derive a function T[e] that translates each expression e with pairs into a semantically equivalent expression with sums. The translation for the selection operator fst is:

$$T[[fst \ e]] = T[[e]]$$
 (L)

Write an appropriate translation for pairs $T[(e_1, e_2)]$.

Note: your translation must preserve the call-by-value semantics for the evaluation of pairs. For instance, the evaluation of T[fst (1, 2+3)] must evaluate 2+3 at some point.

4. [12 pts] Consider the following ML function declaration:

```
fun f(x) = x(f(x))
```

- (a) [6pts] What is the type that ML infers for f?
- (b) [6pts] Consider the evaluation of expression f(fn _ => 0). If this evaluation terminates, write the resulting value. If it doesn't, explain why and mention a language where a similar expression would terminate.
- 5. [7 pts] Below is a program written in some language with nested procedures:

```
procedure A =
  var x : integer;
  procedure B = begin print(x) end B;
  procedure C = ...
begin x := 1; C(); end A;
```

Fill in the declaration of procedure C such that the program produces different outputs under static and dynamic scoping.

6. [7 pts] Write type-checking rules for the following ML-style exception constructs:

```
e_1 handle (x:t) \Rightarrow e_2 raise e
```

Here, x is the formal argument of the exception handler e_2 (so x may occur free in e_2), t is the type of x, and e is the actual value being passed when the exception is raised. If an exception occurs, and is handled by "... handle $(x:t) \Rightarrow e_2$ ", the result is the value of e_2 . Your rules must be sound and least restrictive.

7. [7 pts] Suppose I declare the following classes in Java 1.5:

```
class A { int a; }
class B extends A { int b; }
class C<T> { ... }

Then, I write the following:

C<B> ob = new C<B>();
C<A> oa = ob;
```

Java will reject this program because it won't type-check the second assignment. If you think Java is too conservative and it is okay to accept the program, write a sound subtyping rule that will allow this code to type-check. If you think it is unsafe to run this program, fill in the missing parts to show how this can lead to a run-time type error.

8. [8 pts] Consider two Java classes:

```
class A {
  void foo(A a) { System.out.println("1"); }
  void foo(B b) { System.out.println("2"); }
}
class B extends A {
  void foo(A a) { System.out.println("3"); }
  void foo(B b) { System.out.println("4"); }
}
```

and the following code fragment:

```
A a = new B();
a.foo(a);
```

- (a) [4 pts] What output does the above Java code produce?
- (b) [4 pts] What would be produced if Java had multi-method dispatch?
- 9. [7 pts] Name three advantages that modules bring to software development, and briefly describe them in three sentences.
- 10. [7 pts] Consider the following Prolog program:

```
f(X,Z) :- f(X, [], Z).
f([H|T], Y, Z) :- f(T, [H|Y], Z).
f([], Y, Y).
```

What is the result of the following query: f([a, [b, c], R], [a, S, T])?