
CS 411 Lecture 6 Command equivalences and program transformations September 10, 2004
Lecturer: Radu Rugina

We can use our semantic models to precisely characterize equivalences of programs. For instance, using the
large-step evaluation relation, two commands c, c′ are equivalent if, starting with the same initial state, they
yield the same final state:

∀s, s′ : 〈c, s〉 ⇓ s′ ⇐⇒ 〈c, s〉 ⇓ s′

Such equivalences allow us to show that program transformations and optimizations preserve the semantics
of the original program. In other words, we can use our formal machinery to prove the correctness of program
transformations.

Let’s consider a couple of standard compiler optimizations. Copy propagation is an optimization that
identifies pairs variables that hold the same value as the result of a copy assignment; the optimization then
replaces occurrences of one variable with the other. Such a transformation is correct if the resulting program
is equivalent to the original one:

x := t; c ∼ x := t; c[t/x]

where c[t/x] is the substitution of variable t for x in command c (i.e., each occurrence of x gets replaced
with t). But this transformation holds only if x or t do not get assigned new values in c; otherwise, the
invariant x = t is not guaranteed to hold and the transformation may be unsafe. Hence, we need to impose
the following safety condition:

x, t 6∈ Wr(c)

where Wr(c) is the set of variables being assigned in c. Note that this condition is safe, but conservative
(why don’t we use a more accurate condition expressed using program states?).

Similarly, constant propagation identifies variables that hold constant values and replaces occurrences of
those variables with their values:

x := n; c ∼ x := n; c[n/x] if x 6∈ Wr(c)

Such transformations give opportunities to the compiler to perform dead code elimination – removing as-
signments whose effects are not being used in the rest of the program:

x := e; c ∼x c if x 6∈ Rd(c)

where Rd(c) is the set of variables being read by command c. However, we must rephrase our notion of
equivalence here: the transformed program and the original one yield the same final states except for the
value of variable x. We write this equivalence as ∼x.

A standard loop optimization is loop invariant code motion, which hoists assignments out of the loop body
to the point right before the loop:

while b do c1;x := e; c2 ∼x x := e;while b do c1; c2

What would be an appropriate condition that would ensure the safety of this transformation? Why do we
use the ∼x equivalence?

We would like to have a clear definition for what substitution or read/write sets mean. An easy way to
define these is by induction on the structure of commands and expressions. For instance, substitution can
be inductively defined as follows:

1



c c[e/x]
skip skip
y := e′ y := e′[e/x]
c1; c2 c1[e/x]; c2[e/x]
if b then c1 else c2 if b[e/x] then c1[e/x] else c2[e/x]
while b do c while b[e/x] do c[e/x]

where the substitution for boolean and arithmetic expressions is:

e′ e′[e/x]
n n
x e
y y(ify 6= x)
e1ope2 e1[e/x]ope2[e/x]

The sets of variables read Rd(c) and written Wr(c) by a command c are defined as follows:

c Wr(c) Rd(c)
skip ∅ ∅
x := e x V ars(e)
c1; c2 Wr(c1) ∪Wr(c2) Rd(c1) ∪Rd(c2)
if b then c1 else c2 Wr(c1) ∪Wr(c2) Rd(c1) ∪Rd(c2) ∪ V ars(b)
while b do c Wr(c) Rd(c) ∪ V ars(b)

where V ars(e) is the set of all (read) variables in expression e and has a similar inductive definition.

1 A note on inductive proofs

So far we’ve seen two kinds of inductive proofs for program properties. One proof technique, structural
induction, matches the syntactic structure of language constructs. We’ve also seen a non-inductive proof
where we try to construct a proof tree in the conclusion using subtrees from the hypothesis.

But here is an example of a property where none of these techniques work: each IMP program c that
terminates yields a unique final state. That is, if 〈c, s〉 ⇓ s′ and 〈c, s〉 ⇓ s′′, then s′ = s′′.

Structural induction on c fails here (why? in which of the five structural cases?). What we need is induction
on the derivation of 〈c, s〉 ⇓ s′.

Let P (c, h) = ∀s, s′, s′′ : 〈c, s〉 ⇓ s′ and 〈c, s〉 ⇓ s′′ and height(〈c, s〉 ⇓ s′) = h then s′ = s′′. We want to show
P (c, h) holds for all c ∈ Com and h ≥ 0. Here, the height of the proof tree ignores the parts of the proof tree
that refer to the evaluation of expressions; for instance the height of 〈x := e, s〉 ⇓ s′ is considered 0.

The proof by induction on derivations is essentially a proof by mathematical induction on h.

In the base case, h = 0. This corresponds to the evaluation of skip and of assignments x := e. We leave
these cases as an exercise.

In the inductive case, assume P (c, h) holds for some h ≥ 0 and for all commands. We want to prove that
P (c, h + 1) also holds. Since h + 1 > 0, it means that the evaluation 〈c, s〉 ⇓ s′ has height at least 1, so c is
either a sequence, an if, or a while command. We will analyze the case when c is a while loop (the other
cases are left as an exercise).

2



Assume that s, s′, s′′ are stores such that 〈while b do c, s〉 ⇓ s′ (with a height h + 1 for the derivation), and
〈while b do c, s〉 ⇓ s′′. We want to show that s′ = s′′.

We have two subcases here, depending on whether the test condition b evaluates to true or false. If
〈b, s〉 ⇓ false, then, by inspecting the rule (fwhile), it must be the case that s′ = s and s′′ = s. Therefore,
s′ = s′′.

If 〈b, s〉 ⇓ true, then the rule (twhile) is applicable for both evaluations 〈while b do c, s〉 ⇓ s′ and
〈while b do c, s〉 ⇓ s′′. We get:

〈b, s〉 ⇓ true 〈c, s〉 ⇓ s0 〈while b do c, s0〉 ⇓ s′

〈while b do c, s〉 ⇓ s′

〈b, s〉 ⇓ true 〈c, s〉 ⇓ s1 〈while b do c, s1〉 ⇓ s′′

〈while b do c, s〉 ⇓ s′′

The key fact here is that the evaluations of both c and while b do c in the premises have height h. Therefore,
we can apply the induction hypothesis P (c, h) for both of them, By induction hypothesis for c we get that
s0 = s1. Then we apply the induction hypothesis for while b do c (since we know that s0 = s1) and get
s′ = s′′, which concludes the proof.

3


