CS 411 Lecture 4 IMP: a simple imperative language September 6, 2004

Lecturer: Radu Rugina

We shall now consider a more realistic programming language, one where we can assign values to variables
and execute control constructs such as “if” and “while”. The syntax for this simple imperative language,
called IMP, is as follows:

expressions e € Expr = AExp U BExp
arithmetic expressions a € AExp az=x | n | a+as
boolean expressions b € BExp b:=true | false | a1 < as
commands c € Com cu=skip | z:=a | c15¢

| if b then ¢ else ¢y
| while b do ¢

We'll first give a small-step operational model for IMP. The configurations in this language are of the
form (e, s), (b, s), and (a, s), where s is a store. And the final configurations are (skip, s), (true, s),
(false, s), and (n, s). We need to define the one-step evaluation relations for commands and expressions:
(e, sy = (c, §"), (b, s) = (V, §'),{(a, s) — (d, &).

The evaluation rules for arithmetic and boolean expressions are similar to the ones we’ve seen before. For
commands, the rules are:

{er, 8) = (e, ')

(1102, 5) = {1502, 8) (skip;c, s) — (¢, s)

For if commands, we gradually reduce the test until we get either true or false; then, we execute the
appropriate branch:

(b, s) = (V' s)

(if b then ¢, else cq, s) — (if b’ then c; else ¢y, s) (if true then ¢; else ¢y, s) — (c1, $)

(if false then c; else ¢z, s) — (ca,)

For while loops, the above strategy doesn’t work (why?). Instead, we can use the following rule:

(while b do ¢, s) — (if (b) then (¢; while b do ¢) else skip, s)

We can now take a concrete program and see how it executes under the above rules. Consider we start with
state s = {z = 0} and we execute the program:

x:=3;while (r <4)doz:=2+5

The execution works as follows:

(x :=3;while (zr <4)doz:=x+5, s) —
(skip; while (z < 4) do z:=z +5, ') (where s" = s[z — 3])
(while (r < 4) do z :==x+5, §)

(if (r < 4) then (z := z + 5; W) else skip, s')

(if (3 < 4) then (z := z + 5; W) else skip, s')
(if true then (z := x + 5; W) else skip, s’)
(z =z +5;while (r <4) doz:=x+5, s')
(
(
(
(if
(if
(
(

!

|

l

1

l

l

|

!

x =3+ 5;while (z <4) do x :=z +5,)
x :=8;while (r <4)doz:=x+5, s)
while (z < 4) do z:=z+5, s”) (where s = §'[z — 8])
if (z < 4) then (z := z + 5; W) else skip, s”)
(8(4) then (z := z + 5; W) else skip, s")
if false then (x := z + 5; W) else skip, s)
skip, s")

!

!

l

—

—

|

(where W is an abbreviation for the while loop while (z < 4) do = := = + 5).

