CS 312

Spring 2008

Lecture 28
Logic programming
Wrap-up

Imperative programming: tell computer how to
change its state to accomplish a result

Declarative programming: tell computer what you
want computed, without specifying state changes

Avoids side effects, enables analysis and optimization

functional programming: give an expression equal to the
desired result

logic programming: give a logical formula describing
what should be true of the result

a simple version: database queries

Logic programming in Prolog
Programmer defines boolean-valued predicates

Language figures out all ways to make predicates true.

Example (syntax modified from Prolog)

parent(X,Y) <= father(X,Y).
parent(X,Y) <= mother(X,Y).

father (bob, alice). i.e., <= true
?- parent(bob, X).

X = alice

?- parent(X, X).

No

sibling(X,Y) <= parent(Z,X), parent(Z,Y).
father (bob, charlie).

?- sibling(alice, X).

X = alice

X = charlie

Concatenating lists

Goal: define predicate join(L1, L2, L3) meaning L1@L2 =
L3.

If T1 @ L2 = T3, then H1:T1@L2 = H1::T3. So:

Join ([1,2, L2)-
join(H1::T1, L2, H1::T3) <= join(T1l,L2,T3).
?- join([1,2,3]1, [4,5,6], X)
X =11,2,3,4,5,6]
?- join([1l,X,3], 4::Y, [1,2,Z,W,5,6])
S I RS SN =)
P+ Jodn L, X, X1, [Y;¥], [X,X,Y,Y,Y])

Goal: better software design and
implementation

New programming paradigms
higher-order functions, pattern matching, polymorphism, concurrency, ...

Specifying functions and data abstractions
Reasoning about correctness

using specifications, logic
Reasoning about performance

asymptotic complexity, recurrences, amortized complexity, locality

Important data structures and algorithms

balanced binary trees, hash tables, splay trees, B-trees, functional impls

SML is fun and ML variants (SML, OCaml, Haskell) are
used in some “real-world” apps.

Functional style is useful in almost any language.
Most course material is not specific to SML:
Specifications, AF, RI, logic and verification

Recurrences and complexity analysis

Data structures and algorithms

What if you miss functional programming?

First-class functions can be simulated with first-class
objects.
val f: t->t’'= fn(x:t)=>eissimilar to:

class Fn {
t’ apply(t x) { return e; }
}

Fn £ = new Fn();
f (x) istranslated to f.apply(x)

Java nested classes can even mention variables from
containing scope.

C# supports first-class functions directly (delegates)

Pattern matching is not supported by object-oriented
languages

Problem: matching type T requires knowing exactly
what T is.

Doesn’t work with abstract types -- conflicts with data
abstraction

Could not expose pattern matching in SML signatures

Can we have a pattern-matching mechanism that
works with objects and data abstraction?

JMatch supports predicate methods with multiple
modes capturing directions of computation

class List {

Object head; List tail;

List(Object h, List t) returns (h, t)
(head = h & tail = t)

}

Forward mode: creates an object. Backward mode:
pattern matches, binds h and t:

switch (lst) {
case List(l, List(Object x, List rest)):
return List(x, f(rest))

}

JMatch logic programming

A limited form of logic programming!

List join(List x, List y) returns(x) returns(y) (
x = List(hx, tx) &
tr = join(tx, y) &
result = List(hx, tr)

let List(l, List(2, null)) = join(prefix, List y);

. use y here ...

static RBNode balance(int color, int value,
RBTree left, RBTree right) {

if (color == BLACK) {
switch (value,left,right) {
case int z, RBNode(RED, int vy,
RBNode (RED,int x,RBTree a,RBTree b),RBTree c),
RBTree d:
case z, RBNode(RED,x,a,RBNode(RED,y,b,c)),d:
case X, ¢, RBNode(RED,z,RBNode(RED,y,a,b),d):
case X, a, RBNode(RED,y,b,RBNode(RED,z,c,d)):
return RBNode(RED,vy,
RBNode (BLACK, x,a,b) ,RBNode(BLACK,z,c,d));

}

return RBNode(color, value, left, right);

Logic programming has iteration built in.

class RBNode implements IntCollection, Tree {
RBTree left, right; int value; boolean color;
boolean contains(int x) iterates(x) (

x < value && left.contains(value) ||

x = value ||

x > value && right.contains(value)
)

}

Forward mode: usual BST lookup
Backward mode: in-order tree traversal!

foreach (tree.contains(int x) & x < 10) {
. uUse X ...

}

The tree iterator in Java

class Treelterator implements lterator {

Iterator subiterator;

boolean hasNext;

Object current;

int state;

/] states:

/I 1. lterating through left child.

/I 2. Just yielded current node value
/[3. lterating through right child

Treelterator() {
subiterator = RBTree.this.left.iterator();
state = 1;
preloadNext();

}

public boolean hasNext() {
return hasNext;

}
public Object next() {

if (ThasNext) throw new NoSuchElementException();

Object ret = current;

private void preloadNext() {
loop: while (true) {
switch (state) {
case 1:
case 3:
hasNext = true;
if (subiterator.hasNext()) {
current = subiterator.next();
return;
} else {
if (state == 1) {
state = 2;
current = RBTree.this.value;
return;
} else {
hasNext = false;
return;
}
case 2:
subiterator = RBTree.right.iterator();
state = 3;
continue loop;

Object-oriented languages are incorporating many
functional programming language features (higher-
order functions, polymorphism, lexical scoping...)

Pattern matching may show up too!

Final exam

May 13, 7-9:30pm, Phillips 203

Open book

Cumulative

Complexity: CS 381

Understanding programming paradigms and
language features: CS 411, CS 611

Language implementation: CS 412/413
Algorithms and algorithm design: CS 482
Logic: CS 486

Think about participating in 312 (and in other
courses) as a course consultant

