
CS 312
Spring 2008

Lecture 28
Logic programming

Wrap-up

Declarative vs. imperative
• Imperative programming: tell computer how to

change its state to accomplish a result

• Declarative programming: tell computer what you
want computed, without specifying state changes

• Avoids side e!ects, enables analysis and optimization

• functional programming: give an expression equal to the
desired result

• logic programming: give a logical formula describing
what should be true of the result

• a simple version: database queries

Logic programming in Prolog
Programmer defines boolean-valued predicates

• Language figures out all ways to make predicates true.

• Example (syntax modified from Prolog)
parent(X,Y) <= father(X,Y).
parent(X,Y) <= mother(X,Y).
father(bob, alice). i.e., <= true
?- parent(bob, X).
X = alice
?- parent(X, X).
No
sibling(X,Y) <= parent(Z,X), parent(Z,Y).
father(bob, charlie).
?- sibling(alice, X).
X = alice
X = charlie

Concatenating lists
• Goal: define predicate join(L1, L2, L3) meaning L1@L2 =

L3.

• If T1 @ L2 = T3, then H1::T1@L2 = H1::T3. So:

join([], L2, L2).
join(H1::T1, L2, H1::T3) <= join(T1,L2,T3).
?- join([1,2,3], [4,5,6], X)
X = [1,2,3,4,5,6]

?- join([1,X,3], 4::Y, [1,2,Z,W,5,6])
X = 2, Y = [5,6], Z = 3, W = 4

?- join([1,X,X], [Y,Y], [X,X,Y,Y,Y])

What did we cover?
Goal: better software design and
implementation

• New programming paradigms
• higher-order functions, pattern matching, polymorphism, concurrency, ...

• Specifying functions and data abstractions

• Reasoning about correctness
• using specifications, logic

• Reasoning about performance
• asymptotic complexity, recurrences, amortized complexity, locality

• Important data structures and algorithms
• balanced binary trees, hash tables, splay trees, B-trees, functional impls

Life after 312

• SML is fun and ML variants (SML, OCaml, Haskell) are
used in some “real-world” apps.

• Functional style is useful in almost any language.

• Most course material is not specific to SML:

• Specifications, AF, RI, logic and verification

• Recurrences and complexity analysis

• Data structures and algorithms

• What if you miss functional programming?

Simulating functions with objects

• First-class functions can be simulated with first-class
objects.

val f: t->t’= fn(x:t)=>e is similar to:

class Fn {
 t’ apply(t x) { return e; }
}

Fn f = new Fn();

f(x) is translated to f.apply(x)

• Java nested classes can even mention variables from
containing scope.

• C# supports first-class functions directly (delegates)

Pattern matching
• Pattern matching is not supported by object-oriented

languages

• Problem: matching type T requires knowing exactly
what T is.

• Doesn’t work with abstract types -- conflicts with data
abstraction

• Could not expose pattern matching in SML signatures

• Can we have a pattern-matching mechanism that
works with objects and data abstraction?

JMatch: Java + pattern matching

• JMatch supports predicate methods with multiple
modes capturing directions of computation

class List {
Object head; List tail;
List(Object h, List t) returns (h, t)
 (head = h & tail = t)
}

• Forward mode: creates an object. Backward mode:
pattern matches, binds h and t:

switch (lst) {
case List(1, List(Object x, List rest)):

return List(x, f(rest))
}

JMatch logic programming

• A limited form of logic programming!

List join(List x, List y) returns(x) returns(y) (

 x = List(hx, tx) &

 tr = join(tx, y) &

 result = List(hx, tr)

)

let List(1, List(2, null)) = join(prefix, List y);

... use y here ...

Rebalancing a red-black tree in JMatch

static RBNode balance(int color, int value,
 RBTree left, RBTree right) {

	

 if (color == BLACK) {
	

 	

 switch (value,left,right) {
	

 	

 	

 case int z, RBNode(RED,int y,
	

 	

 	

 RBNode(RED,int x,RBTree a,RBTree b),RBTree c),
 RBTree d:
	

 	

 	

 case z, RBNode(RED,x,a,RBNode(RED,y,b,c)),d:
	

 	

 	

 case x, c, RBNode(RED,z,RBNode(RED,y,a,b),d):
	

 	

 	

 case x, a, RBNode(RED,y,b,RBNode(RED,z,c,d)):
	

 	

 	

 	

 return RBNode(RED,y,
 RBNode(BLACK,x,a,b),RBNode(BLACK,z,c,d));
	

 	

 }
	

 }
 return RBNode(color, value, left, right);
}

Iteration
• Logic programming has iteration built in.

 class RBNode implements IntCollection, Tree {
	

 	

 RBTree left, right; int value; boolean color;
 	

	

 boolean contains(int x) iterates(x) (
	

 	

 x < value && left.contains(value) ||
	

 	

 x = value ||
	

 	

 x > value && right.contains(value)
	

)	

	

 }

• Forward mode: usual BST lookup
• Backward mode: in-order tree traversal!

foreach (tree.contains(int x) & x < 10) {
 ... use x ...
}

!e tree iterator in Java
class TreeIterator implements Iterator {

 Iterator subiterator;
 boolean hasNext;
 Object current;
 int state;
 // states:
 // 1. Iterating through left child.
 // 2. Just yielded current node value
 // 3. Iterating through right child

 TreeIterator() {
 subiterator = RBTree.this.left.iterator();
 state = 1;
 preloadNext();
 }

 public boolean hasNext() {
 return hasNext;
 }

 public Object next() {
 if (!hasNext) throw new NoSuchElementException();
 Object ret = current;

private void preloadNext() {
 loop: while (true) {
 switch (state) {
 case 1:
 case 3:
 hasNext = true;
 if (subiterator.hasNext()) {
 current = subiterator.next();
 return;
 } else {
 if (state == 1) {
 state = 2;
 current = RBTree.this.value;
 return;
 } else {
 hasNext = false;
 return;
 }
 case 2:
 subiterator = RBTree.right.iterator();
 state = 3;
 continue loop;
 }

Conclusions

• Object-oriented languages are incorporating many
functional programming language features (higher-
order functions, polymorphism, lexical scoping...)

• Pattern matching may show up too!

Final exam

• May 13, 7-9:30pm, Phillips 203

• Open book

• Cumulative

Follow-on courses
• Complexity: CS 381

• Understanding programming paradigms and
language features: CS 411, CS 611

• Language implementation: CS 412/413

• Algorithms and algorithm design: CS 482

• Logic: CS 486

• "ink about participating in 312 (and in other
courses) as a course consultant

