
1

CS 312 Lecture 1
Course overview

Andrew Myers
Cornell University Computer Science
Spring 2007

2

What this course is about
Helping you become expert software system
designers and programmers

1) Programming
paradigms

Programming
language concepts

and constructs

2) Reasoning
about

programs

• Correctness
• Performance
• Designing for

reasoning

3) Tools

Data structures
and algorithms

2

3

Course staff
 Prof. Andrew Myers

 Two TAs:
 Xin Zheng
 Olga Belomestnykh

 Consultants:
 Tyler Steele
 Ben Weber
 Edward McTighe
 Kareem Amin
 Bob Albright
 Paul Lewellen
 Andrew Owens

 Office, consulting
hours posted on web

 One hour of
consulting Sun-Wed
evening

 TAs, instructor have
office hours: use
them!

4

Course meetings
 Lectures Tues, Thurs: Thurston 203
 Recitations Monday, Wednesday

 Olin Hall 245, at 2:30pm
 Olin Hall 245, at 3:35pm
 Possible third section

 New material is presented in lecture and
recitation

 Attendance is expected at lecture and recitation
 Participation counts

3

5

Course web site

http://www.cs.cornell.edu/courses/cs312

 Announcements
 Lecture notes
 Assignments
 Course software
 ML documentation
 Other resources

6

Course newsgroup

cornell.class.cs312

 A great place to ask questions!
 A great place to see if your question has

already been asked
 A place to discuss course ideas

 But don’t solve assignments for other people

4

7

Readings
 Course material in lecture notes on

website
 But also responsible for in-class material…

 Some other useful texts:
 Elements of ML Programming, Ullman
 ML for the working programmer, Paulson

 Programming in Standard ML, Harper (on-line)
 Notes on Programming in SML, Pucella (on-line)

 Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Liskov,
Guttag.
 Material on abstraction and specification, but in Java

8

Assignments

 6 problem sets
 PS1 assigned today: “SML Warmup”

 Mix of programming, written problems
 Submitted electronically via CMS

 Three single-person assignments (1-3)
 Three two-person assignments (4-6)

5

9

Exams
 Exams test material from lectures, written

problems, assume you have done assignments
 Prelim 1: March 8
 Prelim 2: April 17

 Final exam May 14, 9-11:30AM

 Makeup exams must be scheduled within the
first two weeks of class
 Check your schedule and let the instructor know

10

Academic integrity

 Strictly and carefully enforced
 Please don’t make us waste time on this
 Start assignments early and get help from

course staff!

6

11

What this course is about
Goal: help you develop as expert programmers
 and system designers

1) Programming
paradigms

Programming
language concepts

and constructs

2) Reasoning
about

programs

• Correctness
• Performance
• Designing for

reasoning

3) Tools

Data structures
and algorithms

12

Why do you need to know this?
 Science and craft of programming
 You’ll acquire skills that will help you

become better programmers
 10x difference in productivity, fun, …

 Needed in many upper level courses
 Needed for any serious programming task
 Needed for managing programming

projects

7

13

1) Programming Paradigms
 Functional programming
 Polymorphism
 Pattern matching
 Modular programming
 Concurrent programming
 Type inference
 Garbage collection

 We’ll use ML to convey these concepts
 The important part are the concepts, not the ML syntax!

14

2) Programming Techniques
 Design and reasoning: critical to robust,

trustworthy software systems.
 Design and planning:

 Modular programming
 Data abstraction
 Specifications, interfaces

 Reasoning about programs
 Program execution models
 Reasoning about program correctness
 Reasoning about performance via asymptotic complexity
 Using induction to reason about program behavior

 Testing

8

15

3) Data Structures & Algorithms
 Standard structures: lists, trees, stacks,

graphs, etc.
 Functional versions of these structures

 Advanced structures:
 Balanced trees: AVL, Red-Black, B-trees, splay trees
 Hash tables
 Binary heaps

 Algorithms on these data structures

16

Language and programming style

 Sapir-Whorf hypothesis: language
influences how we think
 In CS: language influences how we design software

ML

Java

di
ffi

cu
lty

Programming style

9

17

Imperative style
 Program uses commands (a.k.a

statements) that do things to the state of
the system:
 x = x + 1;
 p.next = p.next.next;

 Functions/methods can have side effects
 int wheels(Vehicle v) { v.size++; return v.numw; }

 Problem: Difficult to reason about how
state changes during program execution
 Intertwined state across module boundaries
 Complex object graphs

18

Functional style
 Idea: program without side effects

 Effect of a function abstraction is only to return a result value

 Program is an expression that evaluates to
produce a value (e.g., 4)
 E.g., 2+2
 Works like mathematical expressions

 Allows equational reasoning to show programs
work:
 if x = y, replacing y with x has no effect:

 let val x = f(0) in x+x vs. f(0) + f(0)

 A good match to staged computation
 Information has tree-like structure (no cycles)

10

19

Imperative vs. functional
 ML: a functional programming language

 Encourages building code out of functions
 Like mathematical functions; f(x) always gives the same result

 Functional style usable in ML, Java, C, …
 No side effects: easier to reason about what happens
 Equational reasoning

20

Programming Languages Map

Fortran

Haskell Matlab

Pascal

Perl
C

C++

Lisp

Ocaml
SML

Java

Functional Imperative

Object-Oriented

Scheme

ML
family

JavaScript

11

21

Imperative vs. functional
 Functional languages:

 Higher level of abstraction
 Closer to specification
 Easier to develop robust software

 Imperative languages:
 Lower level of abstraction
 Sometimes more efficient
 More difficult to maintain, debug
 More error-prone

22

Example 1: Sum
y = 0;
for (x = 1; x <= n; x++) {
y = y + x*x;

}

12

23

Example 1: Sum
int sum(int n) {

y = 0;
for (x = 1; x <= n; x++) {

y += x*x;
}
return n;

}
fun sum(n: int): int =

if n=0 then 0
else n*n + sum(n-1)

24

Example 2: Reverse
List reverse(List x) {
 List y = null;
 while (x != null) {

List t = x.next;
x.next = y;
y = x;
x = t;

}
return y;

}

13

25

Example 2: Reverse

fun reverse(l : int list) : int list =
case l of
 [] => []

 | h :: t => reverse(t) @ [h]

26

Why ML?
 ML is not used much in industry. But:
 ML embodies important ideas much better

than Java, C++
 These ideas have Java, C++ manifestations

 Learning a very different language will
give you more flexibility down the road
 New languages are constantly emerging: Java and

C++ will be obsolete soon
 Principles and concepts beat syntax
 Ideas in ML will probably be in next gen languages

 Cred among the right people!

14

27

Rough schedule
 Introduction to functional programming (5)
 Specs and modular programming (4)
 Reasoning about programs (4)
 Prelim 1
 Data structure case studies (2)
 Spring break
 Language semantics and implementation (4)
 Prelim 2
 Advanced data structures (4)
 Concurrency and event-driven programming (3)
 Final exam

28

Announcements
 Problem set 1 released today

 Due January 31, at 11:59pm
 Posted on the course web site and CMS

 Consulting starts today
 Help session: getting started with SML +

Emacs: Thursday, Upson B7, 7pm
 Send mail to Xin (xz83) if you do not have

CMS access for 312

