CS 312 Lecture 1
Course overview

Andrew Myers
Cornell University Computer Science
Spring 2007

What this course is about

Helping you become expert software system
designers and programmers

1) Programming
paradigms

Programming
language concepts
and constructs

2) Reasoning
about
programs

« Correctness

» Performance

« Designing for
reasoning

3) Tools

Data structures
and algorithms




Course staff

Prof. Andrew Myers Office, consulting
hours posted on web

Two TAs:

o Xin Zheng

o Olga Belomestnykh One hour of
consulting Sun-Wed

Consultants: evening

o Tyler Steele

o Ben Weber

2 Edward McTighe TAs, instructor have

o Kareem Amin office hours: use

o Bob Albright them!

o Paul Lewellen

o Andrew Owens

Course meetings

Lectures Tues, Thurs: Thurston 203

Recitations Monday, Wednesday
o Olin Hall 245, at 2:30pm

o Olin Hall 245, at 3:35pm

o Possible third section

New material is presented in lecture and
recitation

Attendance is expected at lecture and recitation
Participation counts




Course web site

http://www.cs.cornell.edu/courses/cs312

Announcements
Lecture notes
Assignments
Course software
ML documentation
Other resources

Course newsgroup

cornell.class.cs312

A great place to ask questions!

A great place to see if your question has
already been asked

A place to discuss course ideas
o But don’t solve assignments for other people




Readings

Course material in lecture notes on
website

Q

But also responsible for in-class material...

Some other useful texts:

Q

Q

Q

Elements of ML Programming, Ullman
ML for the working programmer, Paulson

Programming in Standard ML, Harper (on-line)
Notes on Programming in SML, Pucella (on-line)

Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Liskov,
Guttag.

Material on abstraction and specification, but in Java

Assignments

6 problem sets

[u]

PS1 assigned today: “SML Warmup”

Mix of programming, written problems
Submitted electronically via CMS

Three single-person assignments (1-3)
Three two-person assignments (4-6)




Exams

Exams test material from lectures, written
problems, assume you have done assignments

Prelim 1: March 8
Prelim 2: April 17

Final exam May 14, 9-11:30am

Makeup exams must be scheduled within the

first two weeks of class
o Check your schedule and let the instructor know

Academic integrity

Strictly and carefully enforced
Please don’'t make us waste time on this

Start assignments early and get help from
course staff!

10




What this course is about

Goal: help you develop as expert programmers

and system designers

1) Programming
paradigms

Programming
language concepts
and constructs

2) Reasoning
about
programs

« Correctness

» Performance

« Designing for
reasoning

3) Tools

Data structures
and algorithms

Why do you need to know this?

Science and craft of programming
You'll acquire skills that will help you

become better programmers
o 10x difference in productivity, fun, ...

Needed in many upper level courses
Needed for any serious programming task
Needed for managing programming

projects




1) Programming Paradigms

Functional programming
Polymorphism

Pattern matching
Modular programming
Concurrent programming
Type inference

Garbage collection

We’ll use ML to convey these concepts

o The important part are the concepts, not the ML syntax!

2) Programming Techniques

Design and reasoning: critical to robust,
trustworthy software systems.

Design and planning:
o Modular programming

o Data abstraction

o Specifications, interfaces

Reasoning about programs

o Program execution models

o Reasoning about program correctness

o Reasoning about performance via asymptotic complexity
o Using induction to reason about program behavior

Testing




3) Data Structures & Algorithms

Standard structures: lists, trees, stacks,
graphs, etc.
o Functional versions of these structures

Advanced structures:

o Balanced trees: AVL, Red-Black, B-trees, splay trees
o Hash tables

o Binary heaps

Algorithms on these data structures

Language and programming style

Sapir-Whorf hypothesis: language
influences how we think

o In CS: language influences how we design software
Java

L

difficulty

Programming style




Imperative style

Program uses commands (a.k.a
statements) that do things to the state of
the system:

o X=x+1;

o p.next = p.next.next;

Functions/methods can have side effects
o int wheels(Vehicle v) { v.size++; return v.numw; }
Problem: Difficult to reason about how
state changes during program execution

o Intertwined state across module boundaries
o Complex object graphs

Functional style

Idea: program without side effects

o Effect of a function abstraction is only to return a result value
Program is an expression that evaluates to
produce a value (e.g., 4)

2 E.g., 2+2

o Works like mathematical expressions

Allows equational reasoning to show programs
work:

o if x =y, replacing y with x has no effect:

o letval x = f(0) in x+x vs. f(0) +f(0)

A good match to staged computation
Information has tree-like structure (nocycles) —,




Imperative vs. functional

ML.: a functional programming language

o Encourages building code out of functions

o Like mathematical functions; f(x) always gives the same result
Functional style usable in ML, Java, C, ...

o No side effects: easier to reason about what happens
o Equational reasoning

Programming Languages Map

Functional Imperative

Lisp Fortran

Scheme

Perl

Haskell

Pascal

ML
family

Object-Oriented

20

10



Imperative vs. functional

Functional languages:

o Higher level of abstraction

o Closer to specification

o Easier to develop robust software

Imperative languages:

o Lower level of abstraction

o Sometimes more efficient

o More difficult to maintain, debug
o More error-prone

21

Example 1: Sum

y = 0;
for (x = 1; x <= n; x++) {
y =y + x*x;

22

11



| Example 1: Sum

int sum(int n) {
y = 0;
for (x = 1; x <= n; x++)
y += x*x;

}

return n;
}
fun sum(n: int): int =
if n=0 then 0
else n*n + sum(n-1)

{

23

| Example 2: Reverse

List reverse(List x) {

List y = null;

while (x !'= null) {
List t = x.next;
Xx.next = y;
Y = X,
X = t;

}

return y;

}

24

12



Example 2: Reverse

fun reverse(l : int list) : int list =
case 1 of
[1 => [1
| h :: t => reverse(t) @ [h]

25

Why ML?

ML is not used much in industry. But:

ML embodies important ideas much better
than Java, C++
o These ideas have Java, C++ manifestations

Learning a very different language will

give you more flexibility down the road

o New languages are constantly emerging: Java and
C++ will be obsolete soon

o Principles and concepts beat syntax
o ldeas in ML will probably be in next gen languages

Cred among the right people!

26

13



Rough schedule

Introduction to functional programming (5)
Specs and modular programming (4)
Reasoning about programs (4)

Prelim 1

Data structure case studies (2)

Spring break

Language semantics and implementation (4)
Prelim 2

Advanced data structures (4)

Concurrency and event-driven programming (3)
Final exam

27

Announcements

Problem set 1 released today

o Due January 31, at 11:59pm
o Posted on the course web site and CMS

Consulting starts today

Help session: getting started with SML +
Emacs: Thursday, Upson B7, 7pm

Send mail to Xin (xz83) if you do not have
CMS access for 312

28

14



