
CS 312 Problem Set 5 (Project Part I):
Concurrent Language Interpreter

Due date: 11:59 PM, April10, 2008

1 Introduction

In this assignment, you will finish the implementation of an interpreter for a concurrent functional
language called CL. In addition to the implementation of CL, there are written problems.

A CL program has multiple, parallel threads of execution. CL also has some imperative fea-
tures. Each thread can communicate with other threads through a global shared memory. Threads
can also start other threads to carry out tasks, possibly in cooperation with the original thread. CL
programs can interact with an external environment that provides additional functionality, such as
I/O. In the next assignment, you will use your interpreter to implement a game that uses robots
controlled by a program written in CL, with each robot controlled by a different thread.

We have provided a partial implementation of the CL interpreter. The implementers were
seemingly very lazy and didn’t finish the implementation of all CL expressions. They also didn’t
think about how they could use data structures to accelerate the various operations performed by
the interpreter. As a result, their interpreter is both broken and slow. You will fix this.

The missing piece of CL is thetypecase expression. You will also speed up the interpreter
by figuring out where time goes during execution, and choosing data structures (and possibly
designing new modules) appropriately. We are not looking for you to rewrite the interpreter. In
fact, you will be most successful if you figure out carefully where the time is currently going, and
solve the performance problems by changing existing code as little as possible, adding new code
in as modular a way as possible.

As always, your programs must compile without any warnings. Programs that do not compile
or compile with warnings may receive an automatic zero. Files submitted shouldnot have any
lines longer than 80 characters, and ideally all lines should be less than 78 characters long. We will
evaluate your problem set on several different criteria: the specifications you write, the correctness
of your implementation, code style, efficiency, and your validation strategy. This is a complex
problem set, and you will be building on your PS5 solution for PS6, so we strongly recommend
starting early. Get your design right from the beginning and the rest will go more smoothly.

Summary of changes and clarifications

• March 30: requirements for arrays and priority queues clarified.

• March 31: due date extended to April 10

• April 6: clarifications provided for the use ofany label in the typecase evaluation and part
(a) of the written problem.

1



2 The CL language

2.1 Overview

The CL language has some interesting features. It is a concurrent language in which multiple
threads can execute simultaneously. It has arrays, which can be updated imperatively, and threads
can interact with an external environment. Unlike ML, CL is andynamically typedlanguage, so
there is no type checker to keep you from writing code that produces type errors.

Threads. A running thread can launch another thread using the expressionspawn e. The ex-
pressione is the CL expression that the newly created thread will execute independently of its
parent thread.

Any given thread is either ready to take an evaluation step, or blocked, waiting for something
to happen. Threads can block waiting to acquire a lock, waiting for condition variables, and when
interacting with the external environment.

Threads interact with their external environment using the expression formdo e. This expres-
sion is evaluated by sending the value ofe to the external environment. What happens depends
on the external environment that the CL program is interacting with; the behavior of the exter-
nal environment is not specified by the CL language. Typically, different possible values ofe are
interpreted as requests to perform different actions.

In the external environment provided for PS5, thedo e expression is used for I/O. For example,
the expressiondo 0 causes the external environement to ask the user to input a number, which is
returned as the result of the expression. In the next assignment, you will modify the implementation
of the external environment to allow CL threads to implement robots that sense and interact with
the world around them.

Arrays. Each thread has access to aglobal memorythat is shared by all threads. The global mem-
ory stores mutable arrays that can be updated imperatively. It does this by serving as a mapping
from locationsto arrays. Threads can communicate with each other by modifying these arrays.

Arrays in CL can accessed at both negative and positive indices; in fact, any integer is a valid
index. Arrays do not have a length, so it is not possible to have an out-of-range index. Any type of
value, including array locations, can be stored as array elements. The entries in the an array need
not be of the same type. Accesses to array elements at any index should take constant time, even
if they are accesses to indices outside the bounds of previously used indices.

Programmer implementing more advanced data structures in CL will find arrays an essential
tool.

Values. There are only three types of values in CL:

• Integer constantsn

• Functionsfn id => e

• Array locationsloc.

2



CL has a limited form of pattern matching, through thetypecase expression, which allows
checking which of these three types an expression evaluates to. It also can bind array elements to
variables.

Locks and condition variables. CL supports two mechanisms that allow threads to synchronize
their activities. Lockscan be used to permit at most one thread to access a given resource at a
time. Once a threadacquiresa lock, any other thread that tries to acquire it will block until the
first threadreleasesit. Condition variablesallow threads to wait until other threads signal them to
continue. Both locks and condition variables are named using memory locations. It is important
to realize, locations are just names, and there isno direct connectionbetween the array at location
loc, the lock that is namedloc, or the condition variable that is namedloc. They are three separate
entities that share a name. In particular, acquiring a lock on a memory locationloc does not mean
that the array at locationloc is automatically protected from access by other threads. It only has
that effect if those other threads try to acquire the same lock.

Garbage collection. Garbage is data in global memory that will never be used again. Garbage
collectors clean up garbage by finding memory locations that are not reachable, by following ev-
ery chain of location references from a running thread. Any unreachable location can never be
used again because there is no way to reach it. Unreachable locations should be periodically
reclaimed and used for subsequent allocation requests. The signature filegc.sig describes an
automatic garbage collector for the CL language. Occasionally the garbage collector is used to re-
claim unused memory. In our CL interpreter, garbage collection is implemented using the simple
mark-and-sweepalgorithm.

2.2 Expressions

A CL program can consist of the following expressions:

n An integer constant, as in SML. Examples:∼3, 0, 2.
unope Returnsunop applied to the result of evaluation ofe. unop is one of

following unary operators:∼ (negates an integer), andrand (returns a
random number between 1 andn wheren is the result of evaluation of
e).

e1 binope2 Applies binary operatorbinopto the results of evaluations of the two ex-
pressions. Bothe1 ande2 must evaluate to an integer.binop is one of the
following operators:+,−, ∗, /,mod, <, =. For the last two operators
the result will be 1 if the comparison is true, and 0 otherwise.

e1 ; e2 A sequence of expressions. It is evaluated similarly to an ML sequence.
First expressione1 is evaluated, possibly causing side effects. After that
the result ofe1 is thrown away and expressione2 is evaluated.

let id = e1 in e2 Binds the result of evaluatinge1 to the identifierid and uses the bind-
ing to evaluatee2. Identifiers start with a letter and consist of letters,
underscores, and primes.

3



fn id=>e An anonymous function with argumentid and bodye. The body is not
evaluated until an argument is supplied to the function.

id Identifier. Must be contained inside alet or fn expression with the same
identifier name. Otherwise, an unbound identifier error will occur.

e0 e1 Function application. Evaluates expressione0 to a function valuefn id => e,
evaluates expressione1 to a valuev1, bindsv1 to the identifierid and uses
the binding to evaluatee.

rec id in e Introduces a recursive term namedid. id is in-scope ine, andid is bound
to e. This expression can be used to implement recursive functions, e.g.
let fact = rec f in fn => if n = 0 then 1 else n∗f(n−1) in fact(3)

if e then e1 else e2 Similar to the MLif/then/else expression except that the result of ex-
pressione is tested for being greater than 0 (there are no booleans in CL).
Examples:if 1 then 1 else 2 returns1, if 4<3 then 1 else 2 returns
2.

while e1 then e2 This expression works similarly to an SML while loop. At each itera-
tion of the loop, the condition expressione1 is evaluated. If the result is
greater than 0,e2 is evaluated and then another iteration of the loop is
executed. If the result is equal to or less than 0, 0 is returned.

typecase e of
(id0, . . . , idn−1) => e1

| int id => e2

| fun id => e4

| any id => e5

Evaluates expressione to a value. If the result is a location it binds
the elements of the array from indices 0 ton − 1 to the corresponding
variablesid0, . . . , idn. Otherwise, it binds the the result toid in the ap-
propriate case. The result is the evaluation of the expressionei of the
matched case.
Each of the cases is optional and can occur at most once, in any order.
The case forany matches any value, and is allowed only if at least two
of the other cases are missing. As in ML, all cases must be covered.
The expressiontypecase e1 of any id => e2 is equivalent tolet id =
e1 in e2.

array e Evaluatese to a valuev, then creates a new memory locationloc mapping
to a new array that containsv in every element. Returnsloc.

(e0, e1, . . . , en−1) Evaluatesei to vi, then creates a new memory locationloc mapping to a
new array that containsvi at theith index fori = 0, 1, . . . , n− 1 and 0 at
every other index. Returnsloc.
String literals are syntactic sugar for arrays of integers, in which each
index of the array gives the ASCII code for the corresponding character.
For example,“hello” is sugar for(104, 101, 108, 108, 111).

loc A memory location whose name isloc. This can be thought of as the
address of the location. A location can only be generated using array
constructors. Theloc expression never appears in the source code of
an CL program, but can occur during its evaluation, according to the
semantics of CL given in Section 2.5.

e1[e2] Evaluates expressione1 to a locationloc ande2 to an integern. Returns

4



the value stored in the array at indexn. This operation isnot affected
by whetherloc is currently locked. Locking a location only affects other
attempts to lock the same location.

e1[e2] := e3 Evaluates expressione1 to a locationloc and expressione2 to a valuev2

ande3 to a valuev3. Then it assigns the valuev3 to thevth
2 index of array

stored at locationloc. The return result of this expression isv3. v2 can be
any interger since both positive and negative array indices are allowed.
Note that this operation isnotaffected by whetherloc is currently locked.
Locking a location only affects other attempts to lock the same location.

lock e1 in e2 This expression first evaluatese1 to a locationloc. The expression then
reduces tolocked loc e2. If loc is not already locked, then the current
thread acquires a lock forloc. If any other thread already has the lock,
the thread will block waiting for the lock to be released. This is similar
to thesynchronize statement in Java.

locked loc in e This term occurs during the evaluation of alock expression, after the
lock for loc has been acquired. Likeloc, this expression never appears
in CL source code, but can occur during evaluation once a lock has been
acquired onloc.
The subterme2 is evaluated, while holding the lock. The result of the
expression is the result of evaluatinge2. When evaluation ofe2 finishes,
the lock is released; if any other threads are blocked waiting for this lock,
one of them acquires the lock and is allowed to keep executing.

wait e1 until e2 This expression first evaluatese1 ande2 to locationsloc1 and loc2. It
is a run-time error if the lock named byloc1 is not held by the cur-
rent thread. Atomically, the lockloc1 is released and the current thread
blocks. (Atomically, meaning that no other thread does anything in be-
tween those two actions.) The thread is blocked until some other thread
signals this thread using the expressionsignal loc2 (on the same lo-
cation). Once signaled, the current thread starts running and tries to
reacquire the lockloc1 again before completing the evaluation ofwait
(Thus, it may block again if some other thread acquires the same lock.)
The result ofwait is always 0. This expression is similar to theOb-
ject.wait() method in Java.

signal e This expression first evaluatese to a locationloc. The thread signals one
of the threads waiting onloc (if any). No lock need be held. The result
of signal is always 0. This is similar to theObject.signal() method
in Java.

do e This allows a thread to interact with the external world. First, expression
e is evaluated to a valuev which is then sent to the external world. The
thread blocks waiting for the external world to provide a result. The
return result of this expression can be any CL expression (it is specified
by the external world, and need not be a value). The list of requests
currently recognized by the external world is given in section 2.6.

5



spawn e This creates a new thread that evaluates the expressione concurrently
with the existing threads.

We have provided for you a representation for expressions as the typeAST.exp in the file
ast/ast.sml.

2.3 Precedence

The grammar of CL is similar to that of SML. There are a couple of things to watch out for. In
particular, the sequential composition operator (;) has higher precedence thanlet, case, fn, rec,
andwhile, all of which can end in an expression that uses “;”. So the following two code samples
mean the same thing:

let x = 2 in
do x;
fn z => do y; x + 1

let x = 2 in (do x; (fn z => do y; x + 1))

This gives CL code a somewhat different flavor than SML. If you’re not sure about precedence,
parentheses can always be used to make it explicit.

2.4 Evaluation

A thread is represented by a unique thread identifierpid and expressione. A current state of the
interpreter is described by a queue of threads, as well as a global memoryM and a mapW of
locations to waiting threads. The interpreter repeatedly performs the following operation: it takes
the thread at the head of the queue, performs a single evaluation step on its expression (possibly
modifying global memory), and places the modified thread at the end of the queue. It is important
that threads execute one step at time. If the interpreter evaluated a program down to a value all at
once, the system would not be concurrent because only the thread being evaluated would be able
to run. Therefore, the interpreter must evaluate in steps. Given an expression, the evaluator finds
the leftmost subexpression that can be reduced, and reduces this subexpression.

Note that reductions can occur on several expressions before evaluating all of their subexpres-
sions. These expressions are the following:let id = v in e, if v then e1 else e2, while v then e,
fn id => e, rec id in e , typecase v of (id0, id1, . . . , idn−1) => e1 | . . . , spawn e, lock v in e,
andv ; e. Thev’s indicate subexpressions that must be fully evaluated before the expression can
be reduced, and thee’s indicate subexpressions that are not evaluated until after the reduction of
the whole expression.

2.5 Reductions

The list of possible reductions that can be performed during evaluation is given below. These
reductions are similar to the reductions you have learned for SML. Lettersv stand for values, and
letterse for expressions which may or may not be values. The notatione·{v/x} is an explicit
substitution term (see Section 2.10).

unopv −→ v′ wherev′ = unopv

6



v; e −→ e
let id = v in e −→ e·{v/id}

rec id in e −→ e·{rec id in e/id}
(fn id => e) v −→ e·{v/id}

if v then e1 else e2 −→ e1 v ∈ {1, 2, 3 . . . }
if v then e1 else e2 −→ e2 all otherv

while e1 then e2 −→ if e1 then e2;while e1 e2 else 0
typecase loc of ... (id0, id1, . . . , idn−1) => e ... −→ e · {v0/id0, v1/id1, . . . , vn−1/idn−1}

wherevi is the value at theith index of the
array stored atloc

typecase v of label id => e ... −→ e·{v/id}
wherelabel is one ofint, fun, orany that
matchesv. If multiple labels matchv, the
first matching label in the sequence is used.If
v is a location, it can be matched toany if
the case of the form (id0, id1, . . . , idn−1) is
either absent or occurs after theany case
in the sequence.

The rules for the memory accesses are as follows:

loc [v1] −→ v2

whereloc is a location in the global memory. The return value is
the value at thevth

1 index of the array stored at locationloc.

array v −→ loc
whereloc is a new location in the global memory
Side effect: a locationloc is created in the memory, with its con-
tents initialized to an array that containsv in every element.

(e0, e1, . . . , en−1) −→ loc
whereloc is a new location in the global memory
Side effect: a locationloc is created in the memory, with its con-
tents initialized to an array that containsvi at theith index for
i = 0, 1, . . . , n − 1 and 0 at every other index.

loc [v1] := v2 −→ v2

whereloc is a location in the global memory
Side effect: thevth

1 index of the array stored at locationloc is
assigned a value ofv2

Finally, the reductions for concurrent constructs are:

lock loc in e −→ locked loc e
whereloc is a location in global memory that is currently locked
by another thread. Effects: The current thread block waits till it
can acquire the lock.

7



lock loc in e −→ locked loc e
where loc is a location in global memory and is not currently
locked. Effects: locationloc is locked by the current thread

locked loc v −→ v
whereloc is a location in global memory that is currently locked
by the thread. Effects: the thread releases the lock on locationloc.

wait loc1 until loc2 −→ 0
where loc1 and loc2 are locations in global memory. Requires:
the locationloc1 is currently locked by the thread. Effects: the
current thread is added to queue of threads blocked waiting on
loc2. When the thread is signaled, it tries to acquire lockloc1 and
continue execution.

signal loc −→ 0
where loc is a location in global memory. Effects: at least one
thread waiting for a signal on locationloc begins running again.

do v −→ e
wheree is the expression returned by the external world
Side effect: senddoAction(pid, v) to the external world where
pid is the thread identifier. The external world will return the ex-
pressione.

spawn e −→ n
Side effects: ask the external world for a fresh thread identifier
pid′. If this succeeds, launch a new thread with the identifierpid′

expressione, and a copy of the environment of the current thread;
the result is 1. If the world does not permit a new thread to be
spawned, the result is 0

Notice that because expressions may have side effects, it is critical that expressions are evalu-
ated left to right. For example,e1 binope2 must be evaluated as

e1 binope2 −→ v1 binope2 −→ v1 binopv2 −→ v

2.6 The external environment

Currently thedo action performs simple I/O operations, though in PS6 it will be a general mecha-
nism for interacting with the world. The following actions are currently provided:

• do 0 : reads a number from the input, returns it to the interpreter

• do (1, v) : prints the valuev to the output and returnsv.

• do (2, (c1, c2, c3, . . ., cn)) : prints the charactersc1, . . . , cn. Returns 1 if well-formatted,
0 otherwise. Hereci is considered well-formatted if it contains integer expressions.

• do (3, v) : if valuev is well formed, printsv and returns 1, otherwise prints undefined text
and returns 0. Herev is considered well formed if it only contains integer expressions.

• do 4 : reads a string from the input, returns it to the interpreter

8



2.7 Configurations

A configurationis the state of the entire interpreter at a particular point during execution. The
configuration consists of a set of threads, each of which has a currently executing expression and a
thread id, plus a global memory that is shared by all the threads.

We can describe a single thread as a tuple〈pid, e〉. The entire interpreter configuration is a
triple containing the global memoryM , the mapW of memory locations to a queue of waiting
thread ids and the current queue of threads:

〈M, W, 〈pid1, e1〉, . . . , 〈pidn, en〉〉

The thread at the head of the queue, thread 1, is the one that will take the next evaluation step
and be pushed to the end of the queue. Suppose that this thread takes the evaluation stepe1 −→ e′1,
with effects that change the waiting threads map fromW to W ′ and the global memoryM to M ′.
Then the effect of this step on the configuration as a whole is this:

〈M, W, 〈pid1, e1〉, 〈pid2, e2〉, . . . , 〈pidn, en〉〉
−→ 〈M ′, W ′, 〈pid2, e2〉, . . . , 〈pidn, en〉, 〈pid1, e

′
1〉〉

The type for configurations,Configuration.configuration, is defined in the source file
eval/configuration.sml. A single step of the interpreter is performed by the function
Evaluation.stepConfig in eval/evaluation.sml.

2.8 Creating threads

Threads can create other threads by callingspawn e. As a result, a new thread will be added to
the list of threads. The two threads will be able to communicate with each other if the old thread
had allocated locations in the global memory before spawning.

2.9 Errors and termination

If a thread has evaluated to a value, then itterminatesand is deleted from the list of threads. Thus,
we have the following evaluation rule:

〈M, W, 〈pid1, v1〉, 〈pid2, e2〉, . . . , 〈pidn, en〉〉
−→ 〈M ′, W ′, 〈pid2, e2〉, . . . , 〈pidn, en〉〉

Here,M ′ is the global memory with all locks belonging topid1 released.
In incorrect programs, expressions can encounter run-time errors, such as run-time type errors.

Run-time type errors are expressions that are not value but for which there is no legal reduction. If
a thread in a CL program encounters a run-time error, that single thread immediately terminates.
Of course, any locks that the thread is currently holding are released. Other threads are not directly
affected, however. Errors should terminate the thread encountering them, but do not affect other
running threads.

9



2.10 Substitutions

To speed up evaluation, the interpreter does not eagerly substitute for all unbound occurrences
when a variable is bound in a function call or alet. Instead, the interpreter uses anexplicit substi-
tution model, in which the substitutione{v/x} is represented by a explicit substitution term written
here ase·{v/x}. For example,2·{} (that is,2 with an empty substitution) is equivalent tox·{2/x};
they both evaluate in a single step to2. During evaluation, substitutions are delayed till variables
need to be evaluated. This means the interpreter avoids doing substitution work that is not needed.

The substitution rules are given below. The notation{~v/~x} is shorthand for a substitution for
multiple variablesxi at once:{v1/x1, . . . , vn/xn}. The notation{~v/~x} − x represents set{~v/~x}
with the binding forx (if any) removed, and{~v/~x}+ {~v′/~x′} represents the union of substitutions
in {~v/~x} and{~v′/~x′}, except that{~v′/~x′} overrides{~v/~x} on any variable that both substitute for.

xi · {~v/~x} −→ vi

(unope) · {~v/~x} −→ unop(e · {~v/~x})
(e1binope2) · {~v/~x} −→ (e1 · {~v/~x}) binop(e2 · {~v/~x})

(e1; e2) · {~v/~x} −→ (e1 · {~v/~x}); (e2 · {~v/~x})
(let id = e1 in e2) · {~v/~x} −→ let id = (e1 · {~v/~x}) in (e2 · {~v/~x})

(rec id in e) · {~v/~x} −→ e·{~v/~x} + {rec id in e/id}
(fn id => e) · {~v/~x} −→ fn id => (e · {~v/~x} − id)

(e1 e2) · {~v/~x} −→ (e1 · {~v/~x}) (e2 · {~v/~x})
(if e1 then e2 else e3) · {~v/~x} −→ if (e1 · {~v/~x}) then (e2 · {~v/~x}) else (e3 · {~v/~x})

(while e1 then e2) · {~v/~x} −→ while (e1 · {~v/~x}) then (e2 · {~v/~x})
(typecase e1 of p=> e2 . . . ) · {~v/~x} −→ typecase (e1 · {~v/~x}) of p=> (e2 · {~v/~x}) . . .

(e0, e1, . . . , en−1) · {~v/~x} −→ ((e0 · {~v/~x}), (e1 · {~v/~x}), . . . , (en−1 · {~v/~x}))
(array e) · {~v/~x} −→ array (e · {~v/~x})

(e1[e2]) · {~v/~x} −→ (e1 · {~v/~x})[(e2 · {~v/~x})]
(e1[e2] := e3) · {~v/~x} −→ (e1 · {~v/~x})[(e2 · {~v/~x})] := (e3 · {~v/~x})

(lock e1 in e2) · {~v/~x} −→ lock (e1 · {~v/~x}) in (e2 · {~v/~x})
(wait e) · {~v/~x} −→ wait (e · {~v/~x})

(signal e) · {~v/~x} −→ signal (e · {~v/~x})
(do e) · {~v/~x} −→ do (e · {~v/~x})

(spawn e) · {~v/~x} −→ spawn (e · {~v/~x})
(e · {~v/~x}) · {~v′/~x′} −→ e · ({~v/~x} + {~v′/~x′})

The following example illustrates evaluation steps using explicit substitution:

10



let x = 1 in let f = fn z => x + z in f 3
−→ (let f = fn z => x + z in f 3)·{1/x}
−→ let f = (fn z => x + z)·{1/x} in (f 3)·{1/x}
−→ let f = (fn z => (x + z)·{1/x}) in (f 3)·{1/x}
−→ (f 3)·{1/x}·{(fn z => (x + z)·{1/x})/f}
−→ (f 3)·{1/x, (fn z => (x + z)·{1/x})/f}
−→ f ·{1/x, (fn z => (x + z)·{1/x})/f}3·{1/x, (fn z => (x + z)·{1/x})/f}
−→ (fn z => (x + z)·{1/x}) 3·{1/x, (fn z => (x + z)·{1/x})/f}
−→ (fn z => (x + z)·{1/x}) 3
−→ (x + z)·{1/x}·{z/3} −→ (x + z)·{1/x, 3/z}
−→ x·{1/x, 3/z} + z·{1/x, 3/z} −→ 1 + z·{1/x, 3/z}
−→ 1 + 3 −→ 4

3 Using the interpreter

3.1 File structure

The interpreter code is structured as follows:

• ast/ast.sml: definitions of basic types (AST.exp)

• eval/memory.sig, memory.sml: definition of the memory type (Memory.memory)
and associated operations

• eval/config.sml: definition of the configuration type

• eval/evaluation.sml: performs a single step of the main interpreter loop. The evaluation
searches for the leftmost subexpression to reduce, then calls the reduction function.

• eval/concurrency.sig, concurrency.sml: defines all the concurrency operations

• eval/map.sig, map.sml: defines the type of memory

• eval/substitution.sig, substitution.sml defines the type of the substitution map

• eval/reductions.sml: defines the one-step reduction function.

• eval/gc.sig, gc.sml: garbage collector

• world/action.sig: interface for interaction with the external world

• debug/debug-loop.sml: interface for debugging

• cl/*.cl, a few sample CL programs

11



3.2 Running CL code

After compiling the code (CM.make(“sources.cm”)) you can enter the debugging mode using
the command:

Debug.debug “a string representing an CL program”

You will see a prompt (>). You can get the list of available commands by typing “help”. These
are some commands for quick start:

• s: steps one step and shows the new stepped expression

• r: runs until the end

• l file: resets the interpreter and loads a file with an CL program

• h: gives you the help message and shows you many more commands

• q: quits the debugger

There are many other helpful functions and debugger commands; seedebug/debug-loop.sml
for more details. If you feel that the debugging tools implemented are inadequate, feel free to mod-
ify them.

4 Your task

Part 1: Typecase Evaluation

Finish the implementation of the typecase expession. You will have to make changes to the fol-
lowing files:

• eval/evaluation.sml

• eval/reductions.sml

Part 2: Performance Improvements

The current CL interpreter is very inefficient. It is your task to discover where these bottlenecks lie
and to improve the performance of the interpreter. You should be able to speed up the interpreter
by an order of magnitude if you do your job right. You should also document any changes you
made and explain how and why they improve performance. Gratuitous changes may result in a
penalty.

Like on PS3, the group that produces the fastest correct interpreter implementation will receive
a bonus.

You will want to think about the right data structures to implement performance-critical ab-
stractions. You may use any data structures you find in theSML Basis Library(e.g., arrays and

12

http://www.standardml.org/Basis/


vectors). However, you arenot allowed to use the additional data structures found in theSML/NJ
library, though you may implement your own versions of any data structures if you want to.

You are allowed to modify any code in theeval directory. However, you should not modify
theevaluation.sig file.

To help you figure out where your time is going in the interpreter, you will probably find
the SML/NJ profiler (structureCompiler.Profile or Backend.Profile, depending on which
version of SML/NJ you are using) to be helpful. When profiling is turned on withsetProfMode,
SML will record where time is being spent, and can then generate various useful reports. The
reportData function is one way to get a report. We will expect you to show us before-and-after
profiles for your interpreter running a standard benchmark, and to explain how these profiles show
that you did your job well.

SML/NJ profiling does not fully work on Windows platforms; you can get the number of times
each function was called, but not measurements of time. However, time profiling does work on the
Linux versionversion 110.59and earlier versions. SML/NJ 110.59 is installed on all the CSUG
Linux machines (empire, fuji, gala, csug01–10) in /usr/local/smlnj/bin/sml. You’ll
need to add/usr/local/smlnj/bin to your path to use it.

Part 3: CL Priority Queue

A priority queue is a queue that allows elements to be pushed (enqueued) in any order, but when
elements are dequeued, they come out in order of their priority.

Write a test program that implements a thread-safe priority queue in CL. That is, multiple
threads should be able to use your shared memory priority queue concurrently. For example, if
two threads attempt to dequeue simultaneously, they should never get the same object. Nor should
objects get lost from the queue if there are concurrent enqueues or dequeues. Hint: uselock.

Be sure to write specs for any priority queue operations you define. Your implementation
does not have to be as efficient as possible, but we will give bonus points for especially efficient
implementations. Your program should include a test harness that creates two threads and has them
both enqueue and dequeue 1000 elements.

Part 4: Source Control

You are required to use a source control system like CVS or SVN. Submit the log file that describes
your activity. If you are using CVS, this can be obtained with the commandcvs log.

Part 5: Written problems

There are three written parts to this assignment:

(a) Derive a recurrence relation forT (h) whereT (h) is the maximum number of nodes in a tree
of heighth. The maximum number of children a node is allowed to have ish whereh is the
height of the subtree with the node as the root. Solve forthe closed form ofT (h) and prove
you answer.

13

http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.smlnj.org/doc/smlnj-lib/Manual/toc.html
http://www.smlnj.org/dist/working/110.59/


(b) Find an asymptotic upper bound for the following relation, and show it is correct:

f(n) = k ∗ f(n/2) + n for k > 1

Files to submit

• PS5.zip: A zip file containing all the files to run the interpreter

• priority.cl: CL Priority Queue implementation file

• written.txt or written.pdf: Written problems solution file

• ps5.log: your CVS logs

• design overview.txt or design overview.pdf: An overview document for your as-
signment, as in the previous two assignments. Be sure to describe the changes you made and
to explain how and why they improved performance.

14


	Introduction
	The CL language
	Overview
	Expressions
	Precedence
	Evaluation
	Reductions
	The external environment
	Configurations
	Creating threads
	Errors and termination
	Substitutions

	Using the interpreter
	File structure
	Running CL code

	Your task

