The following pages link to Equality (sets):
View (<math>1 {{int:pipe-separator}} </math>2) (20 | 50 | 100 | 250 | 500)- Set (← links)
- SP18:Lecture 2 Sets (← links)
- Venn diagram (← links)
- Proof:A = (A ∩ B) ∪ (A ∖ B) (← links)
- Claim:A = (A ∩ B) ∪ (A ∖ B) (← links)
- SP18:Lecture 8 Cardinality (← links)
- SP18:Lecture 9 Countability (← links)
- Claim:Injections have left inverses (← links)
- Proof:Injections have left inverses (← links)
- Partition (← links)
- Claim:If A ⊆ B then A ∩ B = A (← links)
- Proof:The power set of the naturals is uncountable (← links)
- FA18:Lecture 2 sets (← links)
- FA18:Lecture 3 proofs (← links)
- Proof:Union computation (← links)
- FA18:Lecture 9 countability (← links)
- FA18:Lecture 11 relations (← links)
- FA18:Lecture 11 equivalence (← links)
- Example:Inequalities are relations (← links)
- Equivalence relation (← links)
- Equivalence class (← links)
- Definition:Partition (← links)
- Claim:A/R partitions A (← links)
- Proof:A/R partitions A (← links)
- SP19:Lecture 2 Set definitions (transclusion) (← links)
- SP19:Lecture 3 Set constructions (← links)
- Equality (Sets) (redirect page) (← links)
- Equality (← links)
- FA19:Lecture 2 Set and function definitions (transclusion) (← links)
- FA19:Lecture 3 Set constructions (← links)
- Claim:A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (← links)
- Proof:A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) (← links)
- FA19:Lecture 4 Proof techniques (← links)
- FA19:Lecture 6 Injectivity and left inverses (← links)
- FA19:Lecture 11 Relations (← links)
- SP20:Lecture 2 Set definitions (transclusion) (← links)
- SP20:Lecture 3 Set constructions (← links)
- SP20:Lecture 4 Proof techniques (← links)
- SP20:Lecture 8 Cardinality (← links)
- SP20:Lecture 9 Diagonalization (← links)
- SP20:Lecture 11 Equivalence classes (← links)
- SP20:Lecture 10 Relations (← links)