Difference between revisions of "SP20:Lecture 4 prep"

From CS2800 wiki
(Created page with "Last semester's notes Please come to lecture with the following definitions: {{:Function definition}} {{:Surjection definition}} {{:Inj...")
 
Line 3: Line 3:
 
Please come to lecture with the following definitions:
 
Please come to lecture with the following definitions:
  
{{:Function definition}}
+
{{Definition:Function}}
  
{{:Surjection definition}}
+
{{Definition:Surjection}}
  
{{:Injection definition}}
+
{{Definition:Injection}}
  
{{:Bijection definition}}
+
{{Definition:Bijection}}

Revision as of 14:49, 27 January 2020

Last semester's notes

Please come to lecture with the following definitions:


Definition: Function
If [math]A [/math] and [math]B [/math] are sets, then a function from [math]A [/math] to [math]B [/math] (written [math]f : A \href{/cs2800/wiki/index.php/%E2%86%92}{→} B [/math]) is an unambiguous rule giving, for every input [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} A [/math], an output [math]f(x) \href{/cs2800/wiki/index.php/%E2%88%88}{∈} B [/math]. [math]A [/math] is called the domain of [math]f [/math]; [math]B [/math] is called the codomain.
Definition: Surjective
A function [math]f : A \href{/cs2800/wiki/index.php/%5Cto}{\to} B [/math] is surjective if for every output [math]y \href{/cs2800/wiki/index.php/%5Cin}{\in} B [/math], there exists an input [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A [/math] such that [math]f(x)=y [/math].
Definition: Injective
A function [math]f : A \href{/cs2800/wiki/index.php/%5Cto}{\to} B [/math] is injective if, for all [math]x_1 [/math] and [math]x_2 \href{/cs2800/wiki/index.php/%5Cin}{\in} A [/math], whenever [math]f(x_1) = f(x_2) [/math], we have [math]x_1 = x_2 [/math].
Definition: Bijective
A function [math]f:A\href{/cs2800/wiki/index.php/%5Cto}{\to}B [/math] is bijective if it is both injective and surjective.