Modus ponens

From CS2800 wiki
Revision as of 09:00, 28 May 2018 by {{GENDER:Mdg39|[math]'"2}} [/math]'"7
(<math>1) </math>2 | <math>3 (</math>4) | <math>5 (</math>6)

If you know "if [math]P [/math] then [math]Q [/math]", and you also know [math]P [/math], you can conclude [math]Q [/math]. This technique is sometimes referred to as "modus ponens".