In this lecture, we introduced some of the basic set operations, and started discussing how to prove things.
Set operations
There are several ways to combine sets together; here we discuss three: the union, intersection and set difference.
Union
If
[math]A
[/math] and
[math]B
[/math] are
sets, then the
union of
[math]A
[/math] and
[math]B
[/math] (written
[math]A \href{/cs2800/wiki/index.php/%5Ccup}{\cup} B
[/math]) is given by
[math]A \cup B \href{/cs2800/wiki/index.php/Definition}{:=} \{x \href{/cs2800/wiki/index.php/%5Cmid}{\mid} x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/Or}{\text{ or }} x \href{/cs2800/wiki/index.php/%5Cin}{\in} B\}
[/math].
This means that if you know [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/%5Ccup}{\cup} B
[/math], you can conclude that 'either' [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A
[/math] 'or' [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} B
[/math], and similarly you can prove [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/%5Ccup}{\cup} B
[/math] if you can either prove [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A
[/math] or that [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} B
[/math].
In this Venn diagram, the union of [math]A
[/math] and [math]B
[/math] is shaded:
Intersection
If
[math]A
[/math] and
[math]B
[/math] are
sets, then the
intersection of
[math]A
[/math] and
[math]B
[/math] (written
[math]A \href{/cs2800/wiki/index.php/%5Ccap}{\cap} B
[/math]) is given by
[math]A \href{/cs2800/wiki/index.php/%5Ccap}{\cap} B \href{/cs2800/wiki/index.php/Definition}{:=} \{x \href{/cs2800/wiki/index.php/%5Cmid}{\mid} x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/And}{\text{ and }} x \href{/cs2800/wiki/index.php/%5Cin}{\in} B\}
[/math].
This means that if you know [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/%5Ccap}{\cap} B
[/math], you can conclude 'both' that [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A
[/math] 'and' [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} B
[/math], and similarly you must prove both [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A
[/math] and [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} B
[/math] to prove [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/%5Ccap}{\cap} B
[/math].
In this Venn diagram, the intersection of [math]A
[/math] and [math]B
[/math] is shaded:
Set difference
If
[math]A
[/math] and
[math]B
[/math] are
sets, then the
set difference [math]A
[/math] minus
[math]B
[/math] (written
[math]A \href{/cs2800/wiki/index.php/%5Csetminus}{\setminus} B
[/math]) is given by
[math]A \href{/cs2800/wiki/index.php/%5Csetminus}{\setminus} B \href{/cs2800/wiki/index.php/Definition}{:=} \{x \href{/cs2800/wiki/index.php/%5Cmid}{\mid} x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/And}{\text{ and }} x \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} B\}
[/math].
We use the symbol [math]\href{/cs2800/wiki/index.php/%5Csetminus}{\setminus}
[/math] instead of the normal [math]-
[/math] because occasionally we will want to use sets to represent number-like things, and we will want to define subtraction differently for those sets (in particular, we will do this in the section on Category:number theory).
This means that if you know [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/%5Csetminus}{\setminus} B
[/math], you can conclude 'both' that [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A
[/math] 'and' [math]x \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} B
[/math], and similarly you must prove both [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A
[/math] and [math]x \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} B
[/math] to prove [math]x \href{/cs2800/wiki/index.php/%5Cin}{\in} A \href{/cs2800/wiki/index.php/%5Csetminus}{\setminus} B
[/math].
In this Venn diagram, the set difference [math]A
[/math] minus [math]B
[/math] is shaded:
Power set
The
power set of a set
[math]A
[/math] (written
[math]\href{/cs2800/wiki/index.php/2}{2}^A
[/math])is the
set of all
subsets of
[math]A
[/math]. Formally,
[math]\href{/cs2800/wiki/index.php/2}{2}^A \href{/cs2800/wiki/index.php/Definition}{:=} \href{/cs2800/wiki/index.php/Set_comprehension}{\{B \mid} B \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} A\}
[/math].
Because the elements of the power set are themselves sets, it is easy to confuse elements and subsets. As with any set comprehension, the elements of [math]\href{/cs2800/wiki/index.php/2}{2}^A
[/math] are the subsets of [math]A
[/math]. Here are some examples:
Let [math]A := \href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2,3\}}
[/math]. Then
- [math]\href{/cs2800/wiki/index.php/2}{2}^A =
\{
\href{/cs2800/wiki/index.php/Empty_set}{\{\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{1\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{2\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{3\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{1,3\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{2,3\}},
\href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2,3\}}
\}
[/math], by inspection. For example, [math]\{1,2,3\} \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/2}{2}^A
[/math] because [math]\{1,2,3\} \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} A
[/math].
- [math]1 \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} \href{/cs2800/wiki/index.php/2}{2}^A
[/math], because 1 is a number but [math]\href{/cs2800/wiki/index.php/2}{2}^A
[/math] contains only sets. Put differently, [math]1 \href{/cs2800/wiki/index.php?title=%5Cnsubseteq&action=edit&redlink=1}{\nsubseteq} A
[/math].
- Therefore [math]\href{/cs2800/wiki/index.php/Enumerated_set}{\{1\}} \href{/cs2800/wiki/index.php?title=%5Cnsubseteq&action=edit&redlink=1}{\nsubseteq} \href{/cs2800/wiki/index.php/2}{2}^A
[/math]
- But note that [math]\href{/cs2800/wiki/index.php/Enumerated_set}{\{1\}} \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/2}{2}^A
[/math].
- for any set [math]X
[/math], we have [math]\href{/cs2800/wiki/index.php/%E2%88%85}{∅} \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/2}{2}^A
[/math] and [math]X \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/2}{2}^X
[/math], because ∅⊆X and X⊆X.
Proofs
We started to prove the following claim:
[math]A \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (B \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} C) \href{/cs2800/wiki/index.php/Equality_(sets)}{=} (A \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B) \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} (A \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} C)
[/math]
We showed two ways not to prove the claim: proof by example (using a picture) and proof by rewriting (using logical equivalences).
Proof by example
This content has not been migrated to the wiki yet. See Media:fa19-lec03-setproofs-slides.pdf.
Sometimes students provide an example when asked for a proof. An especially common way of doing this is by providing a picture (such as a Venn diagram) in place of a proof. This is not sufficient because the proof only works for the specific example given; usually we ask you to prove things about a general situation.
Pictures are still extremely helpful when figuring things out and explaining them! They just usually aren't sufficient to proving a claim in full generality (unless that claim is that something exists, then a picture can be enough to describe the thing exists).
Proof by rewriting
This content has not been migrated to the wiki yet. See Media:fa19-lec03-setproofs-slides.pdf.
Students are often tempted to do proofs about sets by rewriting the logical statements inside the set definitions. Avoid this style for the following reasons:
- Proving that the logical rewriting steps are justified is usually just as complicated as the proof that the sets are equal
- This technique doesn't work anymore once we get past very simple examples. We want you to build good habits while working on the simple cases.
Doing computations or rewriting is a good proof technique in general, but we would like you to avoid doing logical rewriting for now.
Instead, you should make use of the definitions and proof technique to give a step-by-step argument for why a given relationship holds.
Correct proof
We will develop a good proof together in the next lecture.