Difference between revisions of "CS 2800 Spring 2020"

From CS2800 wiki
(Schedule)
(Schedule)
Line 92: Line 92:
 
  | 4/22  || [[SP20:Lecture 30 Sum and product rule|Sum and product rule]] ([[SP20:Lecture 30 prep|prep]], [[Media:sp20-lec30-slides.pdf|slides]])
 
  | 4/22  || [[SP20:Lecture 30 Sum and product rule|Sum and product rule]] ([[SP20:Lecture 30 prep|prep]], [[Media:sp20-lec30-slides.pdf|slides]])
 
  |-
 
  |-
  | 4/24  || Permutations and combinations ([[SP20:Lecture 31 prep|prep]])
+
  | 4/24  || [[SP20:Lecture 31 Permutations and combinations|Permutations and combinations]] ([[SP20:Lecture 31 prep|prep]], [[Media:sp20-lec31-slides.pdf|slides]])
 
  |-
 
  |-
  | 4/27  || Combinatorial proofs ([[SP20:Lecture 32 prep|prep]])
+
  | 4/27  || [[SP20:Lecture 32 Combinatorial proofs|Combinatorial proofs]] ([[SP20:Lecture 32 prep|prep]], [[Media:sp20-lec32-slides.pdf|slides]])
 
  |-
 
  |-
 
  |rowspan=1| [[:Category:Probability]]
 
  |rowspan=1| [[:Category:Probability]]

Revision as of 14:58, 28 April 2020

This is the course website for CS 2800, Spring 2020.

  • Instructor: Michael George. Office hours Wednesday 3-5 in Ward B01.
  • Class meets Monday, Wednesday, Friday, 10:10-11:00am in Statler 185
  • Please read the syllabus
  • Please enroll in Piazza for all course announcements and discussion
  • Homework is posted on Piazza
  • Be sure to frequently refer to the list of Useful pages

Schedule

You are responsible for learning the material in the "prep" page before the corresponding lecture. The prep page will also contain a link to the previous semester's notes. If you want to look ahead to lectures where I haven't yet posted the prep page, you can visit the CS 2800 Fall 2019 page.

Topic Date Lecture Topic
Sets and Proof techniques 1/22 Introduction (prep, slides)
1/24 Set definitions (prep, slides)
1/27 Set constructions (prep, slides)
1/29 Proof techniques (prep, slides)
Functions and Relations 1/31 Functions (prep, slides)
2/3 Quantifiers (prep, slides)
2/5 'Jectivity and inverse functions (prep, slides)
2/7 Cardinality (prep, slides)
2/10 Diagonalization (prep, slides)
2/12 Relations (prep, slides)
2/14 Equivalence classes (prep, slides)
Number theory 2/17 Induction (prep, slides)
2/19 Strong induction and Euclidean division (prep, slides)
2/21 Base b representation (prep, slides)
2/24 No class; February break
Number theory 2/26 GCD algorithm (prep, slides)
2/28 Bézout coefficients (prep, slides)
3/2 Modular numbers (prep, slides)
3/4 Modular division and exponentiation (prep, slides)
3/5 Prelim 1 (study guide)
Number theory 3/6 Euler’s theorem (prep, slides)
3/9 Public key cryptography (prep, slides)
3/11 RSA (prep, slides)
Category:Automata 3/13 Inductively defined sets (prep, slides)
4/6 Structural induction (prep, slides)
4/8 Deterministic Finite Automata (prep, slides)
4/10 Automata constructions (prep, slides)
4/13 Unrecognizable languages (prep, slides)
4/15 Non-determinism (prep, slides)
4/17 Regular expressions (prep, slides)
4/20 Kleene's theorem (prep, slides)
Category:Combinatorics 4/22 Sum and product rule (prep, slides)
4/24 Permutations and combinations (prep, slides)
4/27 Combinatorial proofs (prep, slides)
Category:Probability 4/29 Probability spaces (prep)
4/30 Prelim 2 (study guide)
Category:Probability 5/1 Conditional probability (prep)
5/4 Random variables (prep)
5/6 Expectation (prep)
5/8 Independent RVs (prep)
5/11 Markov's/Chebychev's/Weak law (prep)
5/22 2:00 Final exam

Office hours schedule

(Click for location)