Difference between revisions of "CS 2800 Spring 2020"

From CS2800 wiki
(Schedule)
(Schedule)
Line 28: Line 28:
 
  | 1/29  || [[SP20:Lecture 4 Proof techniques|Proof techniques]] ([[SP20:Lecture 4 prep|prep]], [[Media:sp20-lec04-slides.pdf|slides]])
 
  | 1/29  || [[SP20:Lecture 4 Proof techniques|Proof techniques]] ([[SP20:Lecture 4 prep|prep]], [[Media:sp20-lec04-slides.pdf|slides]])
 
  |-
 
  |-
  |rowspan=8| [[:Category:Functions|Functions]] and [[:Category:Relations|Relations]]
+
  |rowspan=7| [[:Category:Functions|Functions]] and [[:Category:Relations|Relations]]
 
  | 1/31  || [[SP20:Lecture 5 Functions and quantifiers|Functions and quantifiers]] ([[SP20:Lecture 5 prep|prep]], [[Media:sp20-lec05-slides.pdf|slides]])
 
  | 1/31  || [[SP20:Lecture 5 Functions and quantifiers|Functions and quantifiers]] ([[SP20:Lecture 5 prep|prep]], [[Media:sp20-lec05-slides.pdf|slides]])
 
  |-
 
  |-
Line 39: Line 39:
 
  | 2/10  || [[SP20:Lecture 9 Diagonalization|Diagonalization]] ([[SP20:Lecture 9 prep|prep]], [[Media:sp20-lec09-slides.pdf|slides]])
 
  | 2/10  || [[SP20:Lecture 9 Diagonalization|Diagonalization]] ([[SP20:Lecture 9 prep|prep]], [[Media:sp20-lec09-slides.pdf|slides]])
 
  |-
 
  |-
  | 2/12  || Proof techniques review ([[SP20:Lecture 10 prep|prep]])
+
  | 2/12  || Relations ([[SP20:Lecture 10 prep|prep]])
 
  |-
 
  |-
  | 2/14  || Relations ([[SP20:Lecture 11 prep|prep]])
+
  | 2/14  || Equivalence classes ([[SP20:Lecture 11 prep|prep]])
 
  |-
 
  |-
  | 2/17  || Equivalence classes ([[SP20:Lecture 12 prep|prep]])
+
|rowspan=3| [[:Category:Number theory|Number theory]]
 +
  | 2/17  || Induction ([[SP20:Lecture 12 prep|prep]])
 
  |-
 
  |-
|rowspan=2| [[:Category:Number theory|Number theory]]
+
  | 2/19  || Strong induction and Euclidean division ([[SP20:Lecture 13 prep|prep]])
  | 2/19  || Induction ([[SP20:Lecture 13 prep|prep]])
 
 
  |-
 
  |-
  | 2/21  || Strong induction and Euclidean division ([[SP20:Lecture 14 prep|prep]])
+
  | 2/21  || Base b representation ([[SP20:Lecture 14 prep|prep]])
 
  |-
 
  |-
 
  |rowspan=1|  
 
  |rowspan=1|  
Line 54: Line 54:
 
  |-
 
  |-
 
  |rowspan=4| [[:Category:Number theory|Number theory]]
 
  |rowspan=4| [[:Category:Number theory|Number theory]]
  | 2/26  || Base b representation ([[SP20:Lecture 15 prep|prep]])
+
  | 2/26  || GCD algorithm ([[SP20:Lecture 15 prep|prep]])
 
  |-
 
  |-
  | 2/28  || GCD algorithm ([[SP20:Lecture 16 prep|prep]])
+
  | 2/28  || Modular numbers ([[SP20:Lecture 16 prep|prep]])
 
  |-
 
  |-
 
  | 3/2  || Modular numbers ([[SP20:Lecture 17 prep|prep]])
 
  | 3/2  || Modular numbers ([[SP20:Lecture 17 prep|prep]])

Revision as of 16:16, 10 February 2020

This is the course website for CS 2800, Spring 2020.

  • Instructor: Michael George. Office hours Wednesday 3-5 in Ward B01.
  • Class meets Monday, Wednesday, Friday, 10:10-11:00am in Statler 185
  • Please read the syllabus
  • Please enroll in Piazza for all course announcements and discussion
  • Homework is posted on Piazza
  • Be sure to frequently refer to the list of Useful pages

Schedule

You are responsible for learning the material in the "prep" page before the corresponding lecture. The prep page will also contain a link to the previous semester's notes. If you want to look ahead to lectures where I haven't yet posted the prep page, you can visit the CS 2800 Fall 2019 page.

Topic Date Lecture Topic
Sets and Proof techniques 1/22 Introduction (prep, slides)
1/24 Set definitions (prep, slides)
1/27 Set constructions (prep, slides)
1/29 Proof techniques (prep, slides)
Functions and Relations 1/31 Functions and quantifiers (prep, slides)
2/3 'Jectivity (prep, slides)
2/5 Inverse functions (prep, slides)
2/7 Cardinality (prep, slides)
2/10 Diagonalization (prep, slides)
2/12 Relations (prep)
2/14 Equivalence classes (prep)
Number theory 2/17 Induction (prep)
2/19 Strong induction and Euclidean division (prep)
2/21 Base b representation (prep)
2/24 No class; February break
Number theory 2/26 GCD algorithm (prep)
2/28 Modular numbers (prep)
3/2 Modular numbers (prep)
3/4 Modular division and exponentiation (prep)
3/5 Prelim 1
Number theory 3/6 Euler’s theorem (prep)
3/9 Public key cryptography (prep)
3/11 RSA (prep)
Category:Automata 3/13 Inductively defined sets (prep)
3/16 Structural induction (prep)
3/18 Deterministic Finite Automata (prep)
3/20 Automata constructions (prep)
3/23 Unrecognizable languages (prep)
3/25 Non-determinism (prep)
3/27 Regular expressions (prep)
3/30 No class; Spring break
4/1 No class; Spring break
4/3 No class; Spring break
Category:Automata 4/6 Kleene's theorem (prep)
Category:Combinatorics 4/8 Sum and product rule (prep)
4/9 Prelim 2
Category:Combinatorics 4/10 Permutations and combinations (prep)
4/13 Combinatorial proofs (prep)
Category:Probability 4/15 Probability spaces (prep)
4/17 Conditional probability (prep)
4/20 Random variables (prep)
4/22 Expectation (prep)
4/24 Independent RVs (prep)
4/27 Markov's/Chebychev's/Weak law (prep)
Category:Metalogic 4/29 Truth tables (prep)
5/1 Proof trees (prep)
5/4 Soundness and completeness (prep)
5/15 2:00 Final exam

Office hours schedule

(Click for location)