Difference between revisions of "CS 2800 Spring 2020"

From CS2800 wiki
(Schedule)
(Schedule)
Line 50: Line 50:
 
  |-
 
  |-
 
  |rowspan=1|  
 
  |rowspan=1|  
  | 2/24  ||class="break"| No class;  
+
  | 2/24  ||class="break"| No class; February break
 
  |-
 
  |-
 
  |rowspan=4| [[:Category:Number theory|Number theory]]
 
  |rowspan=4| [[:Category:Number theory|Number theory]]
Line 62: Line 62:
 
  |-
 
  |-
 
  |rowspan=1|  
 
  |rowspan=1|  
  | 3/5  ||class="exam"|  
+
  | 3/5  ||class="exam"| Prelim 1
 
  |-
 
  |-
 
  |rowspan=3| [[:Category:Number theory|Number theory]]
 
  |rowspan=3| [[:Category:Number theory|Number theory]]
Line 87: Line 87:
 
  |-
 
  |-
 
  |rowspan=3|  
 
  |rowspan=3|  
  | 3/30  ||class="break"| No class;  
+
  | 3/30  ||class="break"| No class; Spring break
 
  |-
 
  |-
  | 4/1  ||class="break"| No class;  
+
  | 4/1  ||class="break"| No class; Spring break
 
  |-
 
  |-
  | 4/3  ||class="break"| No class;  
+
  | 4/3  ||class="break"| No class; Spring break
 
  |-
 
  |-
 
  |rowspan=1| [[:Category:Automata]]
 
  |rowspan=1| [[:Category:Automata]]
Line 100: Line 100:
 
  |-
 
  |-
 
  |rowspan=1|  
 
  |rowspan=1|  
  | 4/9  ||class="exam"|  
+
  | 4/9  ||class="exam"| Prelim 2
 
  |-
 
  |-
 
  |rowspan=2| [[:Category:Combinatorics]]
 
  |rowspan=2| [[:Category:Combinatorics]]

Revision as of 16:04, 21 January 2020

This is the course website for CS 2800, Spring 2020.

  • Class meets Monday, Wednesday, Friday, 10:10-11:00am in Statler 185
  • Please read the syllabus
  • Please enroll in Piazza for all course announcements and discussion
  • Homework is posted on Piazza
  • Be sure to frequently refer to the list of Useful pages

Schedule

Topic Date Lecture Topic
Sets and Proof techniques 1/22 Introduction
1/24 Set and function definitions
1/27 Set constructions
1/29 Proof techniques
Functions and Relations 1/31 Function properties
2/3 Injectivity and left inverses
2/5 Surjectivity and Bijectivity
2/7 Cardinality
2/10 Diagonalization
2/12 Proof techniques review
2/14 Relations
2/17 Equivalence classes
Number theory 2/19 Induction
2/21 Strong induction and Euclidean division
2/24 No class; February break
Number theory 2/26 Base b representation
2/28 GCD algorithm
3/2 Modular numbers
3/4 Modular division and exponentiation
3/5 Prelim 1
Number theory 3/6 Euler’s theorem
3/9 Public key cryptography
3/11 RSA
Category:Automata 3/13 Inductively defined sets
3/16 Structural induction
3/18 Deterministic Finite Automata
3/20 Automata constructions
3/23 Unrecognizable languages
3/25 Non-determinism
3/27 Regular expressions
3/30 No class; Spring break
4/1 No class; Spring break
4/3 No class; Spring break
Category:Automata 4/6 Kleene's theorem
Category:Combinatorics 4/8 Sum and product rule
4/9 Prelim 2
Category:Combinatorics 4/10 Permutations and combinations
4/13 Combinatorial proofs
Category:Probability 4/15 Probability spaces
4/17 Conditional probability
4/20 Random variables
4/22 Expectation
4/24 Independent RVs
4/27 Markov's/Chebychev's/Weak law
Category:Metalogic 4/29 Truth tables
5/1 Proof trees
5/4 Soundness and completeness
TBD

Office hours schedule

(Click for location)