A
set [math]X
[/math] is
countable if
[math]|X| \href{/cs2800/wiki/index.php/%E2%89%A4}{≤} |\href{/cs2800/wiki/index.php/%E2%84%95}{ℕ}|
[/math].
Equivalently, [math]X
[/math] is countable of
[math]|\href{/cs2800/wiki/index.php/%E2%84%95}{ℕ}| \href{/cs2800/wiki/index.php/%E2%89%A5}{≥} |X|
[/math].
Equivalently, [math]X
[/math] is countable if there exists
a surjection [math]f : \href{/cs2800/wiki/index.php/%E2%84%95}{ℕ} \href{/cs2800/wiki/index.php/%E2%86%92}{→} X
[/math].
This last definition gives an intuitive definition of countability: if we
have a surjection [math]f : \href{/cs2800/wiki/index.php/%E2%84%95}{ℕ} \href{/cs2800/wiki/index.php/%E2%86%92}{→} X
[/math], then we can talk about
could write [math]x_0 := f(0)
[/math], [math]x_1 := f(1)
[/math], etc., so that
we can write [math]X
[/math] in the form [math]X = \{x_0,x_1,x_2,\dots\}
[/math].
The fact that [math]f
[/math] is surjective means that every element
of [math]X
[/math] is [math]x_i
[/math] for some [math]i
[/math].
So the informal definition of countability is that [math]X
[/math] is countable
if its elements can be put in a (potentially infinite) sequence.