Let
[math]\href{/cs2800/wiki/index.php/LHS}{LHS} \href{/cs2800/wiki/index.php/Definition}{:=} \href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2\}} \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \href{/cs2800/wiki/index.php/Enumerated_set}{\{2,3\}}
[/math] denote the left hand side, and similarly let
[math]\href{/cs2800/wiki/index.php/RHS}{RHS} \href{/cs2800/wiki/index.php/Definition}{:=} \href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2,3\}}
[/math]. We
want to show that
[math]\href{/cs2800/wiki/index.php/LHS}{LHS} \href{/cs2800/wiki/index.php/Equality_(sets)}{=} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math], or
in other words that
[math]\href{/cs2800/wiki/index.php/LHS}{LHS} \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math] and [math]\href{/cs2800/wiki/index.php/RHS}{RHS} \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} \href{/cs2800/wiki/index.php/LHS}{LHS}
[/math].
First, we prove LHS ⊆ RHS, i.e. that for all [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/LHS}{LHS}
[/math], [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} RHS
[/math]. Choose an arbitrary [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/LHS}{LHS}
[/math]. Then by definition of ∪, either [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2\}}
[/math] or [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/Enumerated_set}{\{2,3\}}
[/math].
In the first case (when [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \{1,2\}
[/math]), by definition of {1,2}, we know that [math]x = 1
[/math] or [math]x = 2
[/math]. If x = 1, then [math]x = 1
[/math] or [math]x = 2
[/math] or [math]x = 3
[/math], so [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math] by definition. Similarly, if x = 2, then [math]x = 1
[/math] or [math]x = 2
[/math] or [math]x = 3
[/math], so [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math] by definition. In either subcase, we have shown [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math], so we are done with the [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \{1,2\}
[/math] case.
The second case, when [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \{2,3\}
[/math] is similar: since [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \{2,3\}
[/math], we know that [math]x = 2
[/math] or [math]x = 3
[/math]; in both of these subcases, we have [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \{1,2,3\} = \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math].
In both cases, we have shown that [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math], which concludes the subproof that [math]\href{/cs2800/wiki/index.php/LHS}{LHS} \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math].
Now, we need to show that
[math]\href{/cs2800/wiki/index.php/RHS}{RHS} \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} \href{/cs2800/wiki/index.php/LHS}{LHS}
[/math],
i.e. that
every [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math] is
in the
LHS.
Choose an arbitrary [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math]; then
[math]x = 1
[/math] or [math]x = 2
[/math] or [math]x = 3
[/math].
If [math]x = 1
[/math] or [math]x = 2
[/math], then
[math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/Enumerated_set}{\{1,2\}}
[/math], so
[math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/LHS}{LHS}
[/math] (
by definition of
∪). In the third case, when
[math]x = 3
[/math],
we have [math]x = 2
[/math] or [math]x = 3
[/math], so
[math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math]. In
both cases, we have
[math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} RHS
[/math], which completes the proof.