We use
diagonalization to prove the claim. Suppose, for the sake of
contradiction, that
[math]\href{/cs2800/wiki/index.php/2}{2}^\href{/cs2800/wiki/index.php/%E2%84%95}{ℕ}
[/math] is
countable. Then
there exists a
surjection [math]f : \href{/cs2800/wiki/index.php/%E2%84%95}{ℕ} \href{/cs2800/wiki/index.php/%E2%86%92}{→} \href{/cs2800/wiki/index.php/2}{2}^{\href{/cs2800/wiki/index.php/%E2%84%95}{ℕ}}
[/math].
We can imagine drawing [math]f
[/math] as a table. For example, the first few outputs of [math]f
[/math] might look like this:
i |
f(i)
|
0 |
[math]\href{/cs2800/wiki/index.php/%E2%84%95}{ℕ}
[/math]
|
1 |
[math]\href{/cs2800/wiki/index.php/%E2%88%85}{∅}
[/math]
|
2 |
the set of even numbers
|
3 |
the set of odd numbers
|
4 |
[math]\href{/cs2800/wiki/index.php/Enumerated_set}{\{1\}}
[/math]
|
[math]\vdots
[/math] |
[math]\vdots
[/math]
|
To put the sets [math]f(i)
[/math] into a common format, we might expand each set as a sequence of yes/no questions, with the [math]j
[/math]th column of [math]f(i)
[/math] indicating whether [math]j \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)
[/math]:
i |
f(i)
|
[math]0 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]1 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]2 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]3 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]4 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]\cdots
[/math]
|
0 |
[math]\href{/cs2800/wiki/index.php/%E2%84%95}{ℕ}
[/math] |
(yes) |
yes |
yes |
yes |
yes |
[math]\cdots
[/math]
|
1 |
[math]\href{/cs2800/wiki/index.php/%E2%88%85}{∅}
[/math] |
no |
(no) |
no |
no |
no |
[math]\cdots
[/math]
|
2 |
the set of even numbers |
yes |
no |
(yes) |
no |
yes |
[math]\cdots
[/math]
|
3 |
the set of odd numbers |
no |
yes |
no |
(yes) |
no |
[math]\cdots
[/math]
|
4 |
[math]\href{/cs2800/wiki/index.php/Enumerated_set}{\{1\}}
[/math] |
yes |
no |
no |
no |
(no) |
[math]\cdots
[/math]
|
[math]\vdots
[/math]
|
[math]\vdots
[/math]
|
[math]\vdots
[/math]
|
[math]\vdots
[/math]
|
[math]\vdots
[/math]
|
[math]\vdots
[/math]
|
[math]\vdots
[/math]
|
[math]\ddots
[/math]
|
Now, we construct a new diabolical set [math]S_D
[/math] by changing each element on the diagonal. In this example, we have a "yes" in the 0th column of row 0 (meaning [math]0 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(0)
[/math], so in our diabolical set we put a "no" in column 0 (by ensuring [math]0 \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} S_D
[/math]. Similarly, we have a "no" in row 1, column 1 (so [math]1 \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} f(1)
[/math]), so we put a "yes" in column 1 of [math]S_D
[/math] (by placing [math]1 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} S_D
[/math]). Continuing in this fashion, we have
|
[math]0 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]1 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]2 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]3 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]4 \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(i)?
[/math]
|
[math]\cdots
[/math]
|
[math]S_D
[/math] |
no |
yes |
no |
no |
yes |
[math]\cdots
[/math]
|
In general, we include [math]i \href{/cs2800/wiki/index.php/%E2%88%88}{∈} S_D
[/math] if and only if [math]i \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} f(i)
[/math]. We can write this succinctly by defining [math]S_D \href{/cs2800/wiki/index.php/Definition}{:=} \{i \href{/cs2800/wiki/index.php/%5Cmid}{\mid} i \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} f(i)\}
[/math]. Note that although we used a specific example to figure out how to construct [math]S_D
[/math], this construction will work for an arbitrary [math]f
[/math].
Now,
[math]S_D
[/math] cannot be in the
image of
[math]f
[/math], because
for any [math]k
[/math],
[math]S_D
[/math] differs from
[math]f(k)
[/math] in the
[math]k
[/math]th column. If
[math]k \href{/cs2800/wiki/index.php/%E2%88%88}{∈} f(k)
[/math] then
[math]k \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} S_D
[/math], and if
[math]k \href{/cs2800/wiki/index.php/%5Cnotin}{\notin} f(k)
[/math] then
[math]k \href{/cs2800/wiki/index.php/%E2%88%88}{∈} S_D
[/math].
in either case,
[math]S_D \href{/cs2800/wiki/index.php/Equality_(sets)}{≠} f(k)
[/math]. Thus
[math]f
[/math] cannot be
surjective, a
contradiction.