The
logical negation of
[math]\href{/cs2800/wiki/index.php/%E2%88%80}{∀} ε \gt 0, \href{/cs2800/wiki/index.php/%E2%88%83}{∃} δ \gt 0, \href{/cs2800/wiki/index.php/%E2%88%80}{∀} x, \text{ if } 0 \lt |x - 0| \lt δ \text{ then } |f(x) - 1| \lt ε
[/math]
is
[math]\href{/cs2800/wiki/index.php/%E2%88%83}{∃} ε \gt 0, \href{/cs2800/wiki/index.php/%E2%88%80}{∀} δ \gt 0, \href{/cs2800/wiki/index.php/%E2%88%83}{∃} x, 0 \lt |x - 0| \lt δ \text{ and } |f(x) - 1| \not\lt ε
[/math]
Let [math]ε = 1/2
[/math]. Choose an arbitrary [math]δ \gt 0
[/math].
Let [math]x
[/math] be the minimum of [math]δ/2
[/math] and [math]1/2
[/math]. Note that [math]0 \lt x
[/math], [math]x \leq δ/2
[/math] and [math]x \leq 1/2
[/math] (you can prove this using case analysis).
Then we have
[math]0 \lt x \leq δ/2 \lt δ
[/math]. Moreover,
[math]x ≤ 1/2
[/math] so
[math]f(x) - 1 \leq 1/2 - 1 \leq -1/2
[/math], and therefore
[math]|f(x) - 1| \geq 1/2 = ε
[/math], which is what we were trying to prove.