By
induction. Let
[math]P(n)
[/math] be the statement "
[math]A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} (B_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_n) \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_1) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_n)
[/math]."
We must show [math]P(2)
[/math] and [math]P(n+1)
[/math] assuming [math]P(n)
[/math].
In the base case, when [math]n = 2
[/math], we want to show to show that every [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} (B_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_2)
[/math] is also in [math](A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_1) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_2)
[/math]. Choose an arbitrary [math]x
[/math] in the right hand side. Then [math]x ∈ A
[/math] and [math]x ∈ B_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_2
[/math]. This means either (1) [math]x ∈ B_1
[/math] or (2) [math]x ∈ B_2
[/math]. In case (1), we have [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} A
[/math] and [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} B_1
[/math], so [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_1
[/math], and thus [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/RHS}{RHS}
[/math]. B_2ase (2) is similar. In either case, [math]x \href{/cs2800/wiki/index.php/%E2%88%88}{∈} RHS
[/math], as required.
For the inductive step, choose an arbitrary [math]n
[/math] and assume we have already proved [math]P(n)
[/math]. Our goal is to show [math]P(n+1)
[/math]. We compute:
[math]\begin{align*}
A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} (B_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_{n+1})
&= A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} ((B_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_n) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_{n+1}) \\
&⊆ (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} (B_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} B_n)) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_{n+1}) && \text{by P(2)} \\
&⊆ (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_1) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_n) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_{n+1}) && \text{by P(n) and }\href{/cs2800/wiki/index.php/If_A_%E2%8A%86_B_then_A_%E2%88%A9_C_%E2%8A%86_B_%E2%88%A9_C_claim}{ \text{lemma}} \\
&⊆ (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_1) \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} (A \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} B_{n+1}) && \text{by definition}
\end{align*}
[/math]