In our example of an equivalence relation, we noted that the equivalence classes partition the set [math]A
[/math] into disjoint subsets.
In fact, this is a general phenomenon, which we prove here. We begin with a definition:
A
collection of
subsets [math]A_1, A_2, \dots, A_n
[/math] of a
set [math]A
[/math] form a
partition of
[math]A
[/math] if:
- The [math]\href{/cs2800/wiki/index.php/Sequence_notation}{A_i}
[/math] cover [math]A
[/math], i.e. [math]A \href{/cs2800/wiki/index.php/Equality_(sets)}{=} A_1 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} A_2 \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} \cdots \href{/cs2800/wiki/index.php/%E2%88%AA}{∪} A_n
[/math].
- The [math]A_i
[/math] are disjoint, i.e. [math]A_i \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} A_j = \href{/cs2800/wiki/index.php/%E2%88%85}{∅}
[/math] unless [math]i = j
[/math].
The Venn diagram of a partition looks like this:
Now we can prove the following claim:
Proof:
For the first part, note that
[math]a \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧}
[/math]. This is because
[math]R
[/math] must be an
equivalence relation, and is thus
reflexive. This means
[math]\href{/cs2800/wiki/index.php/XRy}{aRa}
[/math] so
[math]a \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧}
[/math], and
thus there exists some
equivalence class containing [math]a
[/math].
For the second part, suppose that [math]\href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧} \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧} \href{/cs2800/wiki/index.php/Equality_(sets)}{≠} \href{/cs2800/wiki/index.php/%E2%88%85}{∅}
[/math]. We want to show that [math]\href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧} \href{/cs2800/wiki/index.php/Equality_(sets)}{=} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧}
[/math]. We will show that [math]\href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧} \href{/cs2800/wiki/index.php/%E2%8A%86}{⊆} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧}
[/math]; the reverse direction is similar.
Choose an arbitrary [math]d \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧}
[/math]; we want to show that [math]d \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧}
[/math].
Since [math]\href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧} \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧} \href{/cs2800/wiki/index.php/Equality_(sets)}{≠} \href{/cs2800/wiki/index.php/%E2%88%85}{∅}
[/math], we know that there exists some [math]c \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦a⟧} \href{/cs2800/wiki/index.php/%E2%88%A9}{∩} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧}
[/math]. By definition of ⟦a⟧ and ⟦b⟧, we have [math]\href{/cs2800/wiki/index.php/XRy}{aRc}
[/math], [math]\href{/cs2800/wiki/index.php/XRy}{bRc}
[/math], and [math]\href{/cs2800/wiki/index.php/XRy}{aRd}
[/math] as in the following picture:
We wish to show that [math]\href{/cs2800/wiki/index.php/XRy}{bRd}
[/math]. Since [math]\href{/cs2800/wiki/index.php/XRy}{aRc}
[/math] and [math]R
[/math] is symmetric we have [math]\href{/cs2800/wiki/index.php/XRy}{cRa}
[/math] (arrow (i) in the picture below). We can then use transitivity to find that [math]\href{/cs2800/wiki/index.php/XRy}{bRa}
[/math] (since [math]bRc
[/math] and [math]cRa
[/math]) (arrow (ii) in the picture below), and then again (since [math]aRd
[/math]) to conclude that [math]bRd
[/math] (arrow (iii) in the picture below).
By definition, since
[math]bRd
[/math], we have
[math]d \href{/cs2800/wiki/index.php/%5Cin}{\in} \href{/cs2800/wiki/index.php/%E2%9F%A6a%E2%9F%A7}{⟦b⟧}
[/math], as required.