If [math]f \href{/cs2800/wiki/index.php/Definition}{:=}
[/math]
and [math]g \href{/cs2800/wiki/index.php/Definition}{:=}
[/math]
then [math]f
[/math] is a left inverse of [math]g
[/math], because
[math]f \href{/cs2800/wiki/index.php/%5Ccirc}{\circ} g \href{/cs2800/wiki/index.php/Equality_(functions)}{=}
[/math]
[math]\href{/cs2800/wiki/index.php/Equality_(functions)}{=} \href{/cs2800/wiki/index.php?title=Id&action=edit&redlink=1}{id}
[/math]
For the same reason, [math]g
[/math] is a right inverse of [math]f
[/math].
However, [math]f
[/math] is not a right inverse of [math]g
[/math] (nor is [math]g
[/math] a left inverse of [math]f
[/math]) because
[math]g \href{/cs2800/wiki/index.php/%5Ccirc}{\circ} f \href{/cs2800/wiki/index.php/Equality_(functions)}{=}
[/math]
[math]\href{/cs2800/wiki/index.php/Equality_(functions)}{\neq} \href{/cs2800/wiki/index.php?title=Id&action=edit&redlink=1}{id}
[/math]
Finally, if [math]h :=
[/math]
and [math]i :=
[/math]
, then [math]h
[/math] and [math]i
[/math] are two-sided inverses of each other, because
[math]h \href{/cs2800/wiki/index.php/%5Ccirc}{\circ} i \href{/cs2800/wiki/index.php/Equality_(functions)}{=}
[/math]
[math]\href{/cs2800/wiki/index.php/Equality_(functions)}{=} \href{/cs2800/wiki/index.php?title=Id&action=edit&redlink=1}{id}
[/math]
and
[math]i \href{/cs2800/wiki/index.php/%5Ccirc}{\circ} h \href{/cs2800/wiki/index.php/Equality_(functions)}{=}
[/math]
[math]\href{/cs2800/wiki/index.php/Equality_(functions)}{=} \href{/cs2800/wiki/index.php?title=Id&action=edit&redlink=1}{id}
[/math]