Random variables are neither "random" nor "variable". However, by defining arithmetic operations on them, we can put them into equations, where they can act like variables.
If
[math]X
[/math] and
[math]Y
[/math] are
random variables on a
probability space [math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math], then
[math]X \href{/cs2800/wiki/index.php?title=%2B&action=edit&redlink=1}{+} Y
[/math] is the
random variable on
[math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math] given by
[math](X \href{/cs2800/wiki/index.php?title=%2B&action=edit&redlink=1}{+} Y)(s) := X(s) + Y(s)
[/math].
Note: You cannot add random variables on different sample spaces.
Similarly, we can define other operations:
If
[math]X
[/math] and
[math]Y
[/math] are
random variables on a
probability space [math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math], then
[math]X \href{/cs2800/wiki/index.php?title=%C2%B7&action=edit&redlink=1}{·} Y
[/math] is the
random variable on
[math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math] given by
[math](X \href{/cs2800/wiki/index.php?title=%C2%B7&action=edit&redlink=1}{·} Y)(s) \href{/cs2800/wiki/index.php/Definition}{:=} X(s)·Y(s)
[/math].
Note: You cannot multiply random variables on different sample spaces.
If
[math]X
[/math] is a
random variable on a
probability space [math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math], then
[math]\href{/cs2800/wiki/index.php?title=-&action=edit&redlink=1}{-} X
[/math] is the
random variable on
[math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math] given by
[math](\href{/cs2800/wiki/index.php?title=-&action=edit&redlink=1}{-} X)(s) := -X(s)
[/math].
As usual,
[math]X \href{/cs2800/wiki/index.php?title=-&action=edit&redlink=1}{-} Y
[/math] is shorthand for
[math]X \href{/cs2800/wiki/index.php?title=%2B&action=edit&redlink=1}{+} (\href{/cs2800/wiki/index.php?title=-&action=edit&redlink=1}{-}Y)
[/math].
For example, suppose we modeled an experiment where we randomly selected a rectangle from a given set. We might have random variables [math]W
[/math] and [math]H
[/math] that give the width and height of the selected rectangle. We could then define a new "area" random variable by multiplying [math]W
[/math] and [math]H
[/math]; this would work as expected: to find the area of a given outcome, you would measure the width and the height and then multiply them (since by definition, [math]A(s) = (W·H)(s) = W(s)H(s)
[/math]).
Because we define operations on random variables pointwise, random variables behave the same way as real numbers do. For example,
If
[math]X
[/math],
[math]Y
[/math], and
[math]Z
[/math] are
random variables on a
probability measure [math](\href{/cs2800/wiki/index.php/S}{S},\href{/cs2800/wiki/index.php/Pr}{Pr})
[/math], then
[math]X(Y + Z) = XY + XZ
[/math].
Proof:
Choose an arbitrary [math]s \href{/cs2800/wiki/index.php/%E2%88%88}{∈} \href{/cs2800/wiki/index.php/S}{S}
[/math]. We have
[math]\begin{align*}
\left(X(Y + Z)\right)(s)
&= X(s)\left(Y+Z\right)(s) && \href{/cs2800/wiki/index.php/%C2%B7_(random_variables)}{\text{by definition of ·}} \\
&= X(s)\left(Y(s) + Z(s)\right) && \href{/cs2800/wiki/index.php/%2B_(random_variables)}{\text{by definition of +}} \\
&= X(s)Y(s) + X(s)Z(s) && \href{/cs2800/wiki/index.php/Arithmetic}{arithmetic} \\
&= (XY)(s) + (XZ)(s) && \href{/cs2800/wiki/index.php/%C2%B7_(random_variables)}{\text{by definition of ·}} \\
&= (XY + XZ)(s) && \href{/cs2800/wiki/index.php/%2B_(random_variables)}{\text{by definition of +}} \\
\end{align*}
[/math]
Thus
[math]X(Y+Z) \href{/cs2800/wiki/index.php/Equality_(functions)}{=} XY + XZ
[/math].